5 resultados para Teorema de Gauss Bonnet

em Universidade Federal do Pará


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gramsci é um autor da atualidade, teórico da mundialização do capitalismo, mas ainda desconhecido, mesmo no campo do marxismo, entre as suas tendências dominantes. Pensar a globalização, o século XXI, a nova conjuntura política nos quadros da contemporaneidade é um desafio intelectual da maior relevância que tem, em Gramsci – certamente para surpresa de uns e negação de outros –, uma de suas fontes mais estimulantes e reveladoras. É fascinante desvendar em seus escritos teses indispensáveis para refletirmos alguns dos principais temas do momento em horizontes mundiais.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O presente trabalho propõe metodologias para detectar a presença e localizar um intruso em ambientes indoor, 2-D e 3-D, sendo que neste último, utiliza-se um sistema cooperativo de antenas e, em ambos os casos, o sistema é baseado em radares multiestáticos. Para obter uma alta resolução, o radar opera com pulsos UWB, que possuem amplitude espectral máxima em 1 GHz para ambientes 2-D e, pulsos de banda larga com frequências entre 200 MHz e 500 MHz para ambientes 3-D. A estimativa de localização, para os ambientes bidimensionais, é feita pela técnica de otimização Enxame de Partículas - PSO (Particle Swarm Optimization), pelo método de Newton com eliminação de Gauss e pelo método dos mínimos quadrados com eliminação de Gauss. Para o ambiente tridimensional, foi desenvolvida uma metodologia vetorial que estima uma possível região de localização do intruso. Para a simulação das ondas eletromagnéticas se utiliza o método numérico FDTD (Diferenças Finitas no Domínio do Tempo) associado à técnica de absorção UPML (Uniaxial Perfectly Matched Layer) com o objetivo de truncar o domínio de análise simulando uma propagação ao infinito. Para a análise do ambiente em 2-D foi desenvolvido o ACOR-UWB-2-D e para o ambiente 3-D foi utilizado o software LANE SAGS.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A maioria dos perfis de poço utilizados nas avaliações petrofísicas de reservatórios possuem uma resolução vertical na ordem de um metro. Isto cria um problema quando as espessuras típicas das camadas são inferiores a um metro, uma vez que não há correção das leituras. Os perfis de alta resolução vertical como da ferramenta de propagação eletromagnética (EPT, Schlumberger), o dipmeter (SHDT, Schlumberger) ou das ferramentas de varredura acústica ou elétrica possuem uma resolução vertical da ordem de centimetros, mas apresentam uma limitada aplicação para as avaliações petrofísicas. Nós apresentamos um método para a deconvolução de um perfil de baixa resolução vertical que utiliza informações de um perfil de alta resolução vertical para identificar uma nítida interface entre camadas que apresentam valores da propriedade petrofísica contrastante, mas localmente constante em ambos os lados. A partir desse intervalo de controle, nós determinamos a função resposta vertical da ferramenta sob as condições atuais do poço com base no teorema da convolução. Utilizamos várias interfaces de modo a obter valores mais representativos da resposta da ferramenta. O perfil de baixa resolução é então deconvoluido utilizando a transformada discreta de Fourier (FFT) sobre todo o intervalo de interesse. É importante destacar que a invasão do filtrado da lama e a presença do bolo de lama não produzem efeitos danosos sobre o método, que foi aplicado a perfis sintéticos e a dados de campo, onde a aplicação de filtros com um correto ajuste de profundidade, bem como a própria escolha do intervalo de controle, antes da deconvolução, são de extrema importância para o sucesso do método.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As medidas de resistividade são de fundamental importância para o cálculo da saturação de óleo em reservatórios potencialmente produtores. A combinação das medidas de resistividade rasa e profunda permite a obtenção dos parâmetros Rt, Rxo e di. Mas, em reservatórios complexos existem dificuldades em se obter leituras confiáveis de Rt, devido à baixa resolução vertical das ferramentas de investigação profunda. Em reservatórios laminados, por exemplo, as leituras obtidas pela ferramenta de indução profunda (ILD) podem levar a uma interpretação errônea das mesmas, levando a acreditar que as medidas obtidas do perfil referem-se a uma única camada. Este problema pode ser em parte resolvido através de uma metodologia que melhore a resolução vertical dos perfis de investigação profunda, valendo-se do uso de informações obtidas de um perfil de alta resolução vertical, i.e; a curva de resistividade rasa. Uma abordagem neste sentido seria usar um perfil de alta resolução que apresente uma boa correlação com o perfil de investigação profunda. Esta correlação pode ser melhor avaliada se aplicarmos um filtro no perfil de alta resolução, de tal forma que o perfil resultante tenha teoricamente a mesma resolução vertical do perfil de baixa resolução. A obtenção deste filtro, porém, recai na premissa de que as funções respostas verticais para as ferramentas de alta e baixa resolução são disponíveis, o que não ocorre na prática. Este trabalho se propõe mostrar uma nova abordagem onde o filtro pode ser obtido a partir de um tratamento no domínio da freqüência. Tal tratamento visa igualar a energia espectral do perfil de alta resolução à energia espectral do perfil de baixa resolução tendo como base o Teorema de Parseval. Será mostrado que a resolução vertical depende fundamentalmente da energia espectral do perfil em questão. A seguir, uma regressão linear é aplicada sobre os perfis de alta resolução filtrado e de baixa resolução. Para cada ponto amostrado dos perfis, uma rotina de minimização é aplicada visando escolher o melhor intervalo de correlação entre os perfis. Finalmente, um fator de correção é aplicado sobre cada ponto do perfil de baixa resolução. Os resultados obtidos com os perfis de indução são promissores, demonstrando a eficácia da abordagem e mesmo quando aplicada em perfis com diferentes propriedades petrofísicas, a metodologia funcionou satisfatoriamente, sem danificar os perfis originais.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

No presente trabalho estudamos a existência e unicidade de solução bem como o decaimento exponencial do modelo abaixo. Nosso resultado mais importante versa sobre o decaimento exponencial do sistema termo-elástico-poroso: Cattaneo versus Fourier, dado por: ρutt = µuxx + bφx − βθx em (0, π) × (0, ∞), Jθφtt = αφxx − bux − ξφ+mθ – γφt em (0, π) × (0, ∞), cθt = k∗qx − βuxt − mφt em (0, π) × (0, ∞), τq mφt= −βq − θx em (0, π) × (0, ∞), u = φx = θ = q = 0 sobre (0, π) × (0, ∞), (u(., 0), φ (., 0), θ (., 0), q(., 0)) = (u0 (x), φ0 (x), θ0 (x), q0 (x)) em (0, π), (ut(., 0), φt(., 0)) = (u1(x), φ1(x)) em (0, π), a existência e unicidade sera´ obtida usando o Teorema de Lumer-Phillips e para o decaimento exponencial usaremos uma técnica de semigrupo.