4 resultados para Numerical Approximations
em Universidade Federal do Pará
Resumo:
Este trabalho discute dois aspectos da migração em profundidade através da continuação para baixo dos campos de onda: o tratamento de modos evanescentes e a correção da amplitude dos eventos migrados. Estes dois aspectos são discutidos em meios isotrópicos e para uma classe de meios anisotrópicos. Migrações por diferenças finitas (FD) e por diferenças finitas e Fourier (FFD) podem ser instáveis em meios com forte variação lateral de velocidade. Estes métodos utilizam aproximações de Padé reais para representar o operador que descreve a propagação de ondas descendentes. Estas abordagens não são capazes de tratar corretamente os modos evanescentes, o que pode levar à instabilidades numéricas em meios com forte variação lateral de velocidade. Uma solução possível para esse problema é utilizar aproximação de Padé complexa, que consegue melhor representar os modos evanescentes associados às reflexões pós-críticas, e neste trabalho esta aproximação é utilizada para obter algoritmos FD e híbrido FD/FFD estáveis para migração em meios transversalmente isotrópicos com eixo de simetria vertical (VTI), mesmo na presença de forte variação nas propriedades elásticas do meio. A estabilidade dos algoritmos propostos para meios VTI foi validada através da resposta ao impulso do operador de migração e pela sua aplicação na migração de dados sintéticos, em meios fortemente heterogêneos. Métodos de migração por equação de onda em meios heterogêneos não tratam corretamente a amplitude dos eventos durante a propagação. As equações de onda unidirecionais tradicionais descrevem corretamente apenas a parte cinemática da propagação do campo de onda. Assim, para uma descrição correta das amplitudes deve-se usar as equações de onda unidirecionais de amplitude verdadeira. Em meios verticalmente heterogêneos, as equações de onda unidirecionais de amplitude verdadeira podem ser resolvidas analiticamente. Em meios lateralmente heterogêneos, essas equações não possuem uma solução analítica. Mesmo soluções numéricas tendem a ser instáveis. Para melhorar a compensação de amplitude na migração, em meios com variação lateral de velocidade, é proposto uma aproximação estável para solução da equação de onda unidirecional de amplitude verdadeira. Esta nova aproximação é implementada nas migrações split-step e diferenças finitas e Fourier (FFD). O algoritmo split-step com correção de amplitude foi estendido para meios VTI. A migração pré e pós-empilhamento de dados sintéticos, em meios isotrópicos e anisotrópicos, confirmam o melhor tratamento das amplitudes e estabilidade dos algoritmos propostos.
Resumo:
O método de estereotomografia é estendido para meios com anisotropia arbitrária e implementado para meios com anisotropia elíptica e anelíptica. Os modelos elípticos e anelípticos apresentam somente três parâmetros. Isto faz com que eles sejam menos sensíveis a ambiguidade, causada pela cobertura limitada dos raios em experimentos sísmicos de superfície e VSP, do que modelos transversalmente isotrópicos ou ortorrômbicos. As correspondentes aproximações para superfície de vagarosidade limita a validade desta implementação para eventos qP com anisotropia suave. Experimentos numéricos mostram o potencial e as limitações da estereotomografia para estimar macro modelos de velocidade adequados para o imageamento na presença de anisotropia e a importância dos eventos de transmissão de experimentos VSP de multiplo afastamento modelo para o sucesso desta abordagem.
Resumo:
A implementação convencional do método de migração por diferenças finitas 3D, usa a técnica de splitting inline e crossline para melhorar a eficiência computacional deste algoritmo. Esta abordagem torna o algoritmo eficiente computacionalmente, porém cria anisotropia numérica. Esta anisotropia numérica por sua vez, pode levar a falsos posicionamentos de refletores inclinados, especialmente refletores com grandes ângulos de mergulho. Neste trabalho, como objetivo de evitar o surgimento da anisotropia numérica, implementamos o operador de extrapolação do campo de onda para baixo sem usar a técnica splitting inline e crossline no domínio frequência-espaço via método de diferenças finitas implícito, usando a aproximação de Padé complexa. Comparamos a performance do algoritmo iterativo Bi-gradiente conjugado estabilizado (Bi-CGSTAB) com o multifrontal massively parallel solver (MUMPS) para resolver o sistema linear oriundo do método de migração por diferenças finitas. Verifica-se que usando a expansão de Padé complexa ao invés da expansão de Padé real, o algoritmo iterativo Bi-CGSTAB fica mais eficientes computacionalmente, ou seja, a expansão de Padé complexa atua como um precondicionador para este algoritmo iterativo. Como consequência, o algoritmo iterativo Bi-CGSTAB é bem mais eficiente computacionalmente que o MUMPS para resolver o sistema linear quando usado apenas um termo da expansão de Padé complexa. Para aproximações de grandes ângulos, métodos diretos são necessários. Para validar e avaliar as propriedades desses algoritmos de migração, usamos o modelo de sal SEG/EAGE para calcular a sua resposta ao impulso.
Resumo:
Implementações dos métodos de migração diferença finita e Fourier (FFD) usam fatoração direcional para acelerar a performance e economizar custo computacional. Entretanto essa técnica introduz anisotropia numérica que podem erroneamente posicionar os refletores em mergulho ao longo das direções em que o não foi aplicado a fatoração no operador de migração. Implementamos a migração FFD 3D, sem usar a técnica do fatoração direcional, no domínio da frequência usando aproximação de Padé complexa. Essa aproximação elimina a anisotropia numérica ao preço de maior custo computacional buscando a solução do campo de onda para um sistema linear de banda larga. Experimentos numéricos, tanto no modelo homogêneo e heterogêneo, mostram que a técnica da fatoração direcional produz notáveis erros de posicionamento dos refletores em meios com forte variação lateral de velocidade. Comparamos a performance de resolução do algoritmo de FFD usando o método iterativo gradiente biconjugado estabilizado (BICGSTAB) e o multifrontal massively parallel direct solver (MUMPS). Mostrando que a aproximação de Padé complexa é um eficiente precondicionador para o BICGSTAB, reduzindo o número de iterações em relação a aproximação de Padé real. O método iterativo BICGSTAB é mais eficiente que o método direto MUMPS, quando usamos apenas um termo da expansão de Padé complexa. Para maior ângulo de abertura do operador, mais termos da série são requeridos no operador de migração, e neste caso, a performance do método direto é mais eficiente. A validação do algoritmo e as propriedades da evolução computacional foram avaliadas para a resposta ao impulso do modelo de sal SEG/EAGE.