4 resultados para Modelos isotrópicos e Anisotrópicos
em Universidade Federal do Pará
Resumo:
As medidas de amplitude, polarização e vagarosidade contem informações sobre o meio onde a propagação de onda ocorre. Esta tese investiga esses dados com objetivo de estimar as propriedades elásticas deste meio. Coeficientes de reflexão podem ser estimados das amplitudes dos dados e dependem de forma não linear dos contrastes dos parâmetros elásticos e do contraste de densidade entre os meios separados por uma interface. Quando o contraste de impedância é fraco, as aproximações lineares para a refletividade qP são mais convenientes para inversão da densidade e dos parâmetros elásticos usando as análises de amplitude versus ângulo de incidência (AVO) e amplitude versus a direção do plano de incidência (AVD). Escrevendo as equações de Zoepprittz de forma separada nos permite escrever uma solução destas equações em termos das matrizes de impedância e polarização. Usando esta solução são determinadas aproximações lineares para a refletividade da onda qP considerando fraco contraste de impedância, fraca anisotropia mas com classe de simetria de arbitrária. As linearizações são avaliadas para diferentes geometrias de aquisição e várias escolhas do meio de referência. Estas aproximações apresentam bom desempenho comparado com o valor exato do coeficiente de reflexão da onda qP e de suas ondas convertidas para incidências de até 30° e meios que obedecem à hipótese de fraca anisotropia. Um conjunto de fraturas orientado é representado efetivamente por um meio transversalmente isotrópico (TI), as aproximações lineares da refletividade da onda qP podem ser usadas para estimar a orientação de fratura. Partindo deste pressuposto este problema consiste em estimar a orientação do eixo de simetria a partir de dados de refletividade de onda qP. Este trabalho mostra que são necessários múltiplos azimutes e múltiplas incidências para se obter uma estimativa estável. Também é mostrado que apenas os coeficientes das ondas qS e qT são sensíveis ao mergulho da fratura. Foi investigada a estimativa da anisotropia local através de dados de VSP multiazimutal dos vetores de polarização e vagarosidade. Foram usadas medidas da componente vertical do vetor de vagarosidade e o vetor de polarização de ondas qP diretas e refletidas. O esquema de inversão é validado através de exemplos sintéticos considerando diferentes escolhas do vetor normal à frente de onda no meio de referência, meios de referências e geometria de aquisição. Esta análise mostra que somente um subgrupo dos parâmetros elástico pode ser estimado. Uma importante aplicação desta metodologia é o seu potencial para a determinação de classes de anisotropia. A aplicação desta metodologia aos dados do mar de Java mostra que os modelos isotrópicos e TIV são inadequados para o ajuste desses dados.
Resumo:
Este trabalho discute dois aspectos da migração em profundidade através da continuação para baixo dos campos de onda: o tratamento de modos evanescentes e a correção da amplitude dos eventos migrados. Estes dois aspectos são discutidos em meios isotrópicos e para uma classe de meios anisotrópicos. Migrações por diferenças finitas (FD) e por diferenças finitas e Fourier (FFD) podem ser instáveis em meios com forte variação lateral de velocidade. Estes métodos utilizam aproximações de Padé reais para representar o operador que descreve a propagação de ondas descendentes. Estas abordagens não são capazes de tratar corretamente os modos evanescentes, o que pode levar à instabilidades numéricas em meios com forte variação lateral de velocidade. Uma solução possível para esse problema é utilizar aproximação de Padé complexa, que consegue melhor representar os modos evanescentes associados às reflexões pós-críticas, e neste trabalho esta aproximação é utilizada para obter algoritmos FD e híbrido FD/FFD estáveis para migração em meios transversalmente isotrópicos com eixo de simetria vertical (VTI), mesmo na presença de forte variação nas propriedades elásticas do meio. A estabilidade dos algoritmos propostos para meios VTI foi validada através da resposta ao impulso do operador de migração e pela sua aplicação na migração de dados sintéticos, em meios fortemente heterogêneos. Métodos de migração por equação de onda em meios heterogêneos não tratam corretamente a amplitude dos eventos durante a propagação. As equações de onda unidirecionais tradicionais descrevem corretamente apenas a parte cinemática da propagação do campo de onda. Assim, para uma descrição correta das amplitudes deve-se usar as equações de onda unidirecionais de amplitude verdadeira. Em meios verticalmente heterogêneos, as equações de onda unidirecionais de amplitude verdadeira podem ser resolvidas analiticamente. Em meios lateralmente heterogêneos, essas equações não possuem uma solução analítica. Mesmo soluções numéricas tendem a ser instáveis. Para melhorar a compensação de amplitude na migração, em meios com variação lateral de velocidade, é proposto uma aproximação estável para solução da equação de onda unidirecional de amplitude verdadeira. Esta nova aproximação é implementada nas migrações split-step e diferenças finitas e Fourier (FFD). O algoritmo split-step com correção de amplitude foi estendido para meios VTI. A migração pré e pós-empilhamento de dados sintéticos, em meios isotrópicos e anisotrópicos, confirmam o melhor tratamento das amplitudes e estabilidade dos algoritmos propostos.
Resumo:
Extrair informações litológicas da subsuperfície através de dados sísmicos constitui-se num grande desafio à prospecção sísmica, pois a hipótese de estratificações formadas por camadas isotrópicas se mostra insuficiente para representar o comportamento do campo elástico em levantamentos com grandes afastamentos entre fonte e receptor, geofones multicomponentes, medidas de VSP tridimensional, entre outros. Sob este panorama, a prospecção sísmica passa a considerar modelos anisotrópicos de subsuperfície para, por exemplo, caracterizar reservatórios. O objetivo deste texto é apresentar um formalismo para modelar o espalhamento de pulsos a partir de ondas planas incidentes em interfaces planas horizontais que separam meios anisotrópicos. Este espalhamento é obtido primeiramente, através da formulação explícita dos campos de deformação e tração como função das matrizes propagadoras, de polarização e de impedância do meio. Em seguidaeste formalismo é usado para a obtenção das matrizes dos coeficientes de reflexão e transmissão através de uma interface plana horizontal para posteriormente, ser generalizado para o espalhamento através de múltiplas camadas. Finalmente, inserem-se ao campo da onda incidente as amplitudes de um pulso analítico para calcular o espalhamento do pulso através de estratificações.
Resumo:
A necessidade da adoção de modelos elásticos anisotrópicos, no contexto da sísmica de exploração, vem crescendo com o advento de novas técnicas de aquisição de dados como VSP, walkway VSP, tomografia poço a poço e levantamentos sísmicos com grande afastamento. Meios anisotrópicos, no contexto da sísmica de exploração, são modelos efetivos para explicar a propagação de ondas através de meios que apresentam padrões de heterogeneidade em escala muito menor que o comprimento de onda das ondas sísmicas. Particularmente, estes modelos são muito úteis para explicar o dado sísmico mais robusto que são as medidas de tempo de trânsito. Neste trabalho, são investigados aspectos da propagação de ondas, traçado de raios e inversão de tempos de trânsito em meios anisotrópicos. É estudada a propagação de ondas SH em meios anisotrópicos estratificados na situação mais geral onde estas ondas podem ocorrer, ou seja, em meios monoclínicos com um plano vertical de simetria especular. É mostrado que o campo de ondas SH refletido a partir de um semi-espaço estratificado, não apresenta qualquer informação sobre a possível presença de anisotropia em subsuperfície. São apresentados métodos simples e eficientes para o traçado de raios em 3D através de meios anisotrópicos estratificados, baseados no princípio de Fermat. Estes métodos constituem o primeiro passo para o desenvolvimento de algoritmos de inversão de tempos de trânsito para meios anisotrópicos em 3D, a partir de dados de VSP e walkaway VSP. Esta abordagem é promissora para determinação de modelos de velocidade, que são necessários para migração de dados sísmicos 3D na presença de anisotropia. É efetuada a análise da inversão tomográfica não linear, para meios estratificados transversalmente isotrópicos com um eixo de simetria vertical(TIV). As limitações dos dados de tempo de trânsito de eventos qP para determinação das constantes elásticas, são estabelecidas e caracterizados os efeitos da falta de cobertura angular completa na inversão tomográfica. Um algoritmo de inversão foi desenvolvido e avaliado em dados sintéticos. A aplicação do algoritmo a dados reais demonstra a consistência de meios TIV. Esta abordagem é útil para casos onde há informação a priori sobre a estratificação quase plana das formações e onde os próprios dados do levantamento poço a poço apresentam um alto grau de simetria especular em relação a um plano vertical. Também pode ser útil em interpretações preliminares, onde a estimativa de um meio estratificado, serve como modelo de fundo para se efetuar análises mais detalhadas, por exemplo, como um modelo de velocidades anisotrópico para migração, ou como um modelo de calibração para análises de AVO.