4 resultados para Kaluza-Klein, Teorias de
em Universidade Federal do Pará
Resumo:
Neste trabalho investigamos soluções solitônicas em modelos de Kaluza-Klein com um número arbitrário de espaços internos toroidais, que descrevem o campo gravitacional de um objeto massivo compacto. Cada toro di-dimensional possui um fator de escala independente Ci, i = 1, ..., N, que é caracterizado pelo parâmetro ᵞi. Destacamos a solução fisicamente interessante correspondente à massa puntual. Para a solução geral obtemos equações de estado nos espaços externo e interno. Estas equações demonstram que a massa pontual solitônica possui equações de estado tipo poeira em todos os espaços. Obtemos também os parâmetros pósnewtonianos que nos possibilitam encontrar as fórmulas da precessão do periélio, do desvio da luz e do atraso no tempo de ecos de radar. Além disso, os experimentos gravitacionais levam a uma forte limitação nos parâmetros do modelo: T = ƩNi=1 diYi = −(2, 1±2, 3)×10−5. A solução para massa pontual com Y1 = . . . = YN = (1+ƩNi=1 di)−1 contradiz esta restrição. A imposição T = 0 satisfaz essa limitação experimental e define uma nova classe de soluções que são indistinguíveis para a relatividade geral. Chamamos estas soluções de sólitons latentes. Cordas negras e membranas negras com Yi = 0 pertencem a esta classe. Além disso, a condição de estabilidade dos espaços internos destaca cordas/membranas negras de sólitons latentes, conduzindo exclusivamente para as equações de estado de corda/membrana negra pi = −ε/2, i = 1, . . . ,N, nos espaços internos e ao número de dimensões externas d0 = 3. As investigações do fluido perfeito multidimensional estático e esfericamente simétrico com equação de estado tipo poeira no espaço externo confirmam os resultados acima.
Resumo:
Nesta dissertação obtemos a força de Casimir a temperatura finita entre duas linhas paralelas sujeitas a condição de fronteira do tipo linhas mistas, no contexto da teoria de Maxwell- Chern-Simons em (2+1) dimensões. Além disso, analisamos a simetria de inversão de temperatura apresentada pela energia livre de Helmholtz do modelo para diferentes condições de fronteira. Iniciamos estudando aspectos gerais do formalismo de Matsubara no intuito de introduzirmos efeitos térmicos na teoria; também analisamos aspectos gerais da teoria de MCS em (2 + 1) dimensões. Posteriormente, revisitamos o cálculo da força de Casimir para o caso de duas linhas paralelas infinitamente permeáveis magneticamente a temperatura nula e finita, bem como o caso de linhas mistas a temperatura nula, onde tomamos uma linha perfeitamente condutora eletricamente e outra infinitamente permeável magneticamente. Em seguida, apresentamos novos resultados envolvendo a força de Casimir a temperatura finita com condições de fronteira do tipo linhas mistas. Por último, analisamos a simetria de inversão de temperatura associada a energia livre de Helmholtz do modelo, mostrando que mesmo para condições mistas e possível obter uma espécie de simetria residual, em analogia a resultados existentes para a eletrodinâmica em (3+1) dimensões.
Resumo:
Neste trabalho determinamos, utilizando Teoria Quântica de Campos em nível de árvore, a radiação escalar emitida por uma fonte em movimento circular uniforme no espaço-tempo plano de Minkowski, assumindo Gravitação Newtoniana, e no espaço-tempo curvo de um buraco negro sem carga e com momento angular nulo, assumindo Relatividade Geral. Efetuamos este cálculo analiticamente para o caso de Minkowski e numericamente no âmbito do espaço-tempo de Schwarzschild, sendo que neste espaço-tempo curvo obtivemos a forma analítica e a normalização dos modos nas regiões assintóticas. Verificamos que, para as órbitas circulares estáveis de acordo com a Relatividade Geral, a potência irradiada no caso de um buraco negro de Schwarzschild é menor do que a obtida no espaço-tempo de Minkowski assumindo a Gravitação Newtoniana. Obtemos também que apenas uma pequena parcela da radiação emitida é absorvida pelo buraco negro. Verificamos que a diferença entre as potências irradiadas em Schwarzschild e Minkowski diminui na medida em que aumentamos o valor da massa do campo. Em Schwarzschild, uma parcela cada vez maior da radiação emitida é absorvida pelo buraco negro na medida em que aumentamos o valor da massa do campo.
Resumo:
We analyze the scalar radiation emitted by a source in uniform circular motion in Minkowski spacetime interacting with a massive Klein-Gordon field. We assume the source rotating around a central object due to a Newtonian force. By considering the canonical quantization of this field, we use perturbation theory to compute the radiation emitted at the tree level. Regarding the initial state of the field as being the Minkowski vacuum, we compute the emission amplitude for the rotating source, assuming it as being minimally coupled to the massive Klein-Gordon field. We then compute the power emitted by the swirling source as a function of its angular velocity, as measured by asymptotic static observers.