1 resultado para BAC-Bibliothek
em Universidade Federal do Pará
Resumo:
Usando o formalismo relativístico no estudo da propagação de perturbações lineares em fluidos ideais, obtêm-se fortes analogias com os resultados encontrados na Teoria da Relatividade Geral. Neste contexto, de acordo com Unruh [W. Unruh, Phys. Rev. Letters 46, 1351 (1981)], é possível simular um espaço-tempo dotado de uma métrica efetiva em um fluído ideal barotrópico, irrotacional e perturbado por ondas acústicas. Esse espaço-tempo efetivo é chamado de espaço-tempo acústico e satisfaz as propriedades geométricas e cinemáticas de um espaço-tempo curvo. Neste trabalho estudamos os modos quasinormais (QNs) e os pólos de Regge (PRs) para um espaço-tempo acústico conhecido como buraco acústico canônico (BAC). No nosso estudo, usamos o método de expansão assintótica proposto por Dolan e Ottewill [S. R. Dolan e A. C. Ottewill, Class. Quantum Gravity 26, 225003 (2009)] para calcularmos, em termos arbitrários do número de overtone n, as frequências QNs e os momentos angulares para os PRs, bem como suas respectivas funções de onda. As frequências e as funções de onda dos modos QNs são expandidas em termos de potências inversas de L = l + 1/2 , onde l é o momento angular, enquanto que os momentos angulares e funções de onda dos PRs são expandidos em termos do inverso das frequências de oscilação do buraco acústico canônico. Comparamos os nossos resultados com os já existentes na literatura, que usam a aproximação de Wentzel-Kramers-Brillouin (WKB) como método de determinação dos modos QNs e dos PRs, e obtemos uma excelente concordância dentro do limite da aproximação eikonal (l ≥ 2 e l > n).