24 resultados para fuzzy linear system
Resumo:
A utilização de Estabilizadores de Sistemas de Potência (ESP), para amortecer oscilações eletromecânicas de pequena magnitude e baixa freqüência, é cada vez mais importante na operação dos modernos sistemas elétricos. Estabilizadores convencionais, com estrutura e parâmetros fixos, têm sido utilizados com essa finalidade há algumas décadas, porém existem regiões de operação do sistema nas quais esses estabilizadores lineares não são tão eficientes, especialmente quando comparados com estabilizadores projetados através de modernas técnicas de controle. Um ESP Neural, treinado a partir de um conjunto de controladores lineares locais, é utilizado para investigar em quais regiões de operação do sistema elétrico o desempenho do estabilizador a parâmetros fixos é deteriorada. O melhor desempenho do ESP Neural nessas regiões de operação, quando comparado com o ESP convencional, é demonstrado através de simulações digitais não-lineares de um sistema do tipo máquina síncrona conectada a um barramento infinito e de um sistema com quatro geradores.
Resumo:
Os hidrogeradores são peças chaves no circuito brasileiro de energia, sua indisponibilidade e mau funcionamento podem causar multas altíssimas a concessionárias aplicadas pela ANEEL por não atenderem a demandas e até por paradas impróprias para efetivar manutenções, além de agravar confiabilidade na garantia do fornecimento aos consumidores finais. Para garantir que isso não venha acontecer, a manutenção preditiva fornece técnicas que podem apontar as falhas analisando os “sinais vitais” originados pelo próprio equipamento. Desta forma as condições mecânicas e operacionais são periodicamente monitoradas e quando as tendências são detectadas insalubres, as peças incômodas na máquina são identificadas e programadas para manutenção. Para que essa tendência seja encontrada, utiliza-se da lógica fuzzy para modelar o comportamento dos hidrogeradores, sendo mais especifico: mancais, estator e anel coletor, inferindo conclusões prováveis de falhas. Neste trabalho, mostra o processo de construção do sistema que auxilia no diagnóstico da manutenção preditiva, desde sua metodologia de desenvolvimento por macro-atividades, definição arquitetural, conformidade dos requisitos e análise do conhecimento inserido a inteligência do sistema. O sistema foi desenvolvido em plataforma labview para servir como ferramenta de apoio. Todo o conhecimento inserido no sistema foi obtido com o corpo especialista de Eletronorte e outra parte na literatura, foi necessário aplicar o conceito de regras ao maquina de inferência fuzzy, para uma forma linguística de fácil compreensão, para que os próprios especialistas ampliem e evolua o software.
Resumo:
A legislação ambiental cada vez mais rigorosa tem forçado as indústrias a investirem em soluções de controle inovadoras buscando diminuir as emissões de gases poluentes pelas fontes móveis e fixas, exercendo melhor controle e tratamento desses poluentes como forma de atender os limites impostos pela lei. Apresenta-se neste trabalho, a implementação de uma melhoria no sistema de controle de exaustão de fornos de cozimento de anodos da indústria de alumínio ALBRAS-Alumínio Brasileiro S.A., localizada em Barcarena no estado do Pará, visando minimizar a poluição causada pela queima de combustíveis nos fornos sem comprometer a eficiência do processo. Para isso foi utilizado um sistema baseado em lógica fuzzy, buscando na experiência de engenheiros, técnicos e operadores de processo, uma forma de se obter um melhor controle e confiabilidade na gestão das emissões de gases poluentes.
Resumo:
Neste trabalho são apresentados os resultados de uma técnica que permitiu implementar a estratégia de controle de temperatura do aquecedor de óleo térmico da fabrica de Anodo Verde da Albrás Alumínio Brasileiro S/A. No projeto utilizou-se um sistema hierarquizado baseado em conjuntos e lógica Fuzzy. O uso dessa metodologia fez com que o sistema fosse capaz de reagir adequadamente diante das variações do ponto de operação do aquecedor, pois o controle Fuzzy exibe algumas características do aprendizado humano, sendo considerado um exemplo de inteligência artificial. O aquecedor de óleo térmico é fundamental no processo de fabricação de blocos inódicos, utilizados como pólo positivo no processo de eletrólise na obtenção do alumínio primário. O sistema de óleo térmico aquece os misturadores e pré-aquecedor de coque, mantendo a temperatura desses equipamentos dentro dos limites estabelecidos pela engenharia de processo. A variável temperatura impacta diretamente na energia de mistura da pasta e na qualidade do produto final, que é o bloco anódico. A metodologia apresentada permitiu alcançar um controle de temperatura que atendeu satisfatoriamente os parâmetros de processo. O programa foi desenvolvido em linguagem ladder é executado em controladores lógicos programáveis (CLP’S) da Rockwell Automation. O controle já está em plena operação nas fábricas de anodos e os resultados obtidos demonstram a eficácia e viabilidade do sistema, que futuramente estará sendo implementado no controle de outros equipamentos da Albrás.
Resumo:
Através do uso da programação em linguagem orientada a objetos e, aplicando-se uma técnica de programação específica, é possível gerar um conjunto de classes genéricas cujos objetos representam cada bloco de um controlador fuzzy e também suas variáveis linguísticas. Tais classes, sendo aplicadas de forma sistemática, facilitam a programação de uma variedade de controladores desta natureza. Este trabalho apresenta a referida técnica e mostra os resultados obtidos através de um modelo simulado de um pêndulo rotacional invertido que é controlado por um sistema de controle composto por três controladores fuzzy, projetados e construídos sob este ponto de vista.
Resumo:
Este trabalho investiga uma estratégia de controle fuzzy Takagi-Sugeno aplicada ao controle de velocidade do motor de indução. A estratégia implementa uma interpolação ponderada entre um conjunto de controladores locais previamente projetados. Ao ocorrer variações nas condições operacionais do motor de indução, os ganhos da lei de controle são ajustados automaticamente, de modo a manter satisfatório o desempenho do sistema de controle. Para o projeto do controlador fuzzy a representação em espaço de estados da planta foi considerada sob a forma de um sistema aumentado, incluindo-se uma nova variável de estado que, nesse caso, foi selecionada como sendo a integral do erro de velocidade. Tal formulação permitiu o projeto de controladores locais com a estrutura PI, através de realimentação completa de estados, com posicionamento de pólos. Como variáveis de operação para o chaveamento fuzzy dos controladores locais, foram selecionados as variáveis velocidade angular do rotor e a componente da corrente de estator responsável pelo torque elétrico do motor. Em seguida, a estabilidade do controlador fuzzy Takagi- Sugeno projetado foi comprovada através do critério de Lyapunov, para isso o problema de estabilidade foi escrito na forma de LMIs. O desempenho do controlador fuzzy Takagi-Sugeno foi avaliado através de estudos de simulação, e seus resultados comparados ao desempenho de um controlador PI convencional, para a regulação da velocidade do rotor. Os resultados obtidos nas simulações mostram que o emprego da estratégia proposta torna o sistema mais robusto a variações paramétricas no sistema de acionamento.
Resumo:
Desde a incorporação da automação no processo produtivo, a busca por sistemas mais eficientes, objetivando o aumento da produtividade e da qualidade dos produtos e serviços, direcionou os estudos para o planejamento de estratégias que permitissem o monitoramento de sistemas com o intuito principal de torna-los mais autônomos e robustos. Por esse motivo, as pesquisas envolvendo o diagnóstico de faltas em sistemas industriais tornaram-se mais intensivas, visto a necessidade da incorporação de técnicas para monitoramente detalhado de sistemas. Tais técnicas permitem a verificação de perturbações, falta ou mesmo falhas. Em vista disso, essa trabalho investiga técnicas de detecção e diagnostico de faltas e sua aplicação em motores de indução trifásicos, delimitando o seu estudo em duas situações: sistemas livre de faltas, e sobre atuação da falta incipiente do tipo curto-circuitoparcial nas espiras do enrolamento do estator. Para a detecção de faltas, utilizou-se analise paramétrica dos parâmetros de um modelo de tempo discreto, de primeira ordem, na estrutura autoregressivo com entradas exógenas (ARX). Os parâmetros do modelo ARX, que trazem informação sobre a dinâmica dominante do sistema, são obtidos recursivamente pela técnica dos mínimos quadrados recursivos (MQR). Para avaliação da falta, foi desenvolvido um sistema de inferência fuzzy (SIF) intervala do tipo-2, cuja mancha de incerteza ou footprint of uncertainty (FOU), características de sistema fuzzy tipo-2, é ideal como forma de representar ruídos inerentes a sistemas reais e erros numéricos provenientes do processo de estimação paramétrica. Os parâmetros do modelo ARX são entradas para o SIF. Algoritmos genéricos (AG’s) foram utilizados para otimização dos SIF intervalares tipo-2, objetivando reduzir o erro de diagnóstico da falta identificada na saída desses sistemas. Os resultados obtidos em teste de simulação computacional demonstram a efetividade da metodologia proposta.
Resumo:
Este artigo apresenta novas estratégias de controle fuzzy aplicadas ao conversor estático interligado ao rotor dos geradores de indução duplamente excitados (DFIG), em esquemas eólicos de velocidade variável, integrados a redes elétricas reais. As estratégias de controle propostas são do tipo fuzzy "look-up-table" com supervisão. O desempenho de tais reguladores, baseados em inteligência computacional, é comparado com o obtido com controladores PI's a parâmetros fixos, na ocorrência de faltas no sistema elétrico de potência. Esses controladores fuzzy são destinados a garantir a continuidade da operação dos conversores, e melhorar o desempenho transitório do sistema, em relação aos controladores convencionais. Os resultados apresentados confirmam a eficácia das estratégias de controle adotadas. O modelo físico dos aerogeradores, consistindo de um grande número de turbinas eólicas, foi implementado através de uma ferramenta de simulação dinâmica, desenvolvida no ambiente computacional MATLABTM.
Resumo:
O presente trabalho demonstra a aplicação de um Algoritmo Genético com o intuito de projetar um controlador Fuzzy MISO, através da sintonia de seus parâmetros, em um processo experimental de nivelamento de líquido em um tanque, cuja dinâmica apresenta características não-lineares. Para o projeto e sintonia do controlador, foi utilizado o suporte do software Matlab, e seus pacotes Simulink e Global Optimization Toolbox. O Controlador Fuzzy ora projetado teve seu desempenho avaliado através de ensaios em tempo real em um Sistema de Nível de Liquido.