66 resultados para Dados georreferenciados
Resumo:
O Diabetes Mellitus tipo 1 (DM1) é a endocrinopatia mais comum da infância e adolescência e impacta negativamente na qualidade de vida (QV). O EuroQol é um instrumento que afere o estado de saúde e vem sendo utilizado na grande maioria dos estudos multicêntricos mundiais em diabetes e tem se mostrado uma ferramenta extremamente útil e confiável. O objetivo desse estudo é avaliar a QV de pacientes com DM1 do Brasil, país de proporções continentais, por meio da análise do EuroQol. Para isso, realizou-se estudo retrospectivo e transversal, no qual foram analisados questionários de pacientes com DM1, respondidos no período de dezembro de 2008 a dezembro de 2010, em 28 centros de pesquisa de 20 cidades das quatro regiões do país (sudeste, norte/nordeste, sul e centro-oeste). Foram também coletados dados sobre complicações crônicas micro e macrovasculares e perfil lipídico. A avaliação da qualidade de vida pelo EuroQol mostra que a nota média atribuída ao estado geral de saúde é nitidamente menor que a encontrada em dois outros estudos populacionais com DM1 realizados na Europa (EQ-VAS da Alemanha, Holanda e Brasil foram de 82,1 ± 14; 81 ± 15 e 72 ± 22, respectivamente). O EuroQol demonstra que a região Norte-Nordeste apresenta melhor índice na avaliação do estado geral de saúde quando comparada a região Sudeste e menor frequência de ansiedade-depressão autorreferidas, quando comparada às demais regiões do país (Norte-Nordeste = 1,53 ± 0,6, Sudeste = 1,65 ± 0,7, Sul = 1,72 ± 0,7 e Centro-Oeste = 1,67 ± 0,7; p <0,05). Adicionalmente, diversas variáveis conhecidas (idade, duração do DM, prática de atividade física, HbA1c, glicemia de jejum e presença de complicações crônicas se correlacionaram com a QV (r = -0,1, p <0,05; r = -0,1, p <0,05; r = -0,1, p <0,05; r = -0,2, p <0,05; r = -0,1, p <0,05 e r= -0,1, p <0,05, respectivamente). Esse é o primeiro estudo a avaliar a qualidade de vida de pacientes com DM1 a nível populacional no hemisfério sul. Nossos dados indicam uma pior qualidade de vida dos pacientes com DM 1 no Brasil quando comparado a dados de países europeus. Apesar de ter sido encontrado uma inferior duração do DM e menor presença de complicações microvasculares na região Norte/ Nordeste, quando comparada à outras regiões, nossos dados sugerem a existência de elementos adicionais responsáveis pela melhor QV e menor presença de ansiedade/depressão encontradas nesta região. Novos estudos são necessários para identificar esses possíveis fatores.
Resumo:
O objetivo central deste trabalho é o estudo e a aplicação do método Kalman-Bucy no processo de deconvolução ao impulso e de deconvolução com predição, onde é considerado que os dados observados são classificados como não-estacionários. Os dados utilizados neste trabalho são sintéticos e, com isto, esta Tese tem características de um exercício numérico e investigativo. O operador de deconvolução ao impulso é obtido a partir da teoria de CRUMP (1974) fazendo uso das soluções das equações Wiener-Hopf apresentadas por KALMAN-BUCY (1961) nas formas contínuas e discretas considerando o processo como não estacionário. O operador de predição (KBCP) está baseado nas teorias de CRUMP (1974) e MENDEL ET AL (1979). Sua estrutura assemelha-se ao filtro Wiener-Hopf onde os coeficientes do operador (WHLP) são obtidos através da autocorrelação, e no caso (KBCP) são obtidos a partir da função bi(k). o problema é definido em duas etapas: a primeira consta da geração do sinal, e a segunda da sua avaliação. A deconvolução realizada aqui é classificada como estatística, e é um modelo fortemente baseado nas propriedades do sinal registrado e de sua representação. Os métodos foram aplicados apenas em dados sintéticos de seção fonte-comum obtida a partir dos modelos com interfaces contínuas e camadas homogêneas.
Resumo:
Esta Tese apresenta dois estudos aplicados à inversão de dados magnetotelúricos. No primeiro deles, os parâmetros obtidos na inversão são as dimensões da malha de parametrização da subsuperfície, sendo conhecida, a priori, a resistividade de uma heterogeneidade e a do seu meio envolvente; no outro estudo, é abordado o uso de operadores de derivadas de ordem maior do que um com a finalidade de estabilizar o problema inverso. No primeiro estudo, os resultados podem ser considerados satisfatórios somente se a informação sobre as resistividades tem erro menor do que 20%. No segundo estudo, os resultados demonstram que o uso de operadores de ordem maior do que um podem ser mais eficazes do que o uso convencional do operador de primeira derivada, pois além de estabilizarem o problema inverso, esses operadores contribuem para melhorar a resolução das heterogeneidades de resistividade da subsuperfície. Ambos os estudos são inéditos, pois a prática de inversão de dados magnetotelúricos consiste de obter como resultado do problema inverso a resistividade dos prismas de uma malha de parametrização de dimensões fixas, usando como estabilizador o operador de primeira derivada. Os modelos usados nos estudos são bidimensionais e representam uma subsuperfície com uma e duas heterogeneidades de forma prismática envolvidas por ambiente homogêneo. O desempenho das técnicas foi testado com dados sintéticos com e sem ruído gaussiano, bem como dados reais do perfil COPROD2. Durante o trabalho, são, ainda, descritas as técnicas de inversão denominadas creeping e jumping e feita uma comparação e avaliação sobre elas. Mostra-se aqui que, ao contrário do que afirmam muitos pesquisadores, a inclusão de informação a priori sore os parâmetros pode ser feita na técnica do creeping com a mesma facilidade com que é feita na técnica do jumping.
Resumo:
O uso da técnica da camada equivalente na interpolação de dados de campo potencial permite levar em consideração que a anomalia, gravimétrica ou magnética, a ser interpolada é uma função harmônica. Entretanto, esta técnica tem aplicação computacional restrita aos levantamentos com pequeno número de dados, uma vez que ela exige a solução de um problema de mínimos quadrados com ordem igual a este número. Para viabilizar a aplicação da técnica da camada equivalente aos levantamentos com grande número de dados, nós desenvolvemos o conceito de observações equivalentes e o método EGTG, que, respectivamente, diminui a demanda em memória do computador e otimiza as avaliações dos produtos internos inerentes à solução dos problemas de mínimos quadrados. Basicamente, o conceito de observações equivalentes consiste em selecionar algumas observações, entre todas as observações originais, tais que o ajuste por mínimos quadrados, que ajusta as observações selecionadas, ajusta automaticamente (dentro de um critério de tolerância pré-estabelecido) todas as demais que não foram escolhidas. As observações selecionadas são denominadas observações equivalentes e as restantes são denominadas observações redundantes. Isto corresponde a partir o sistema linear original em dois sistemas lineares com ordens menores. O primeiro com apenas as observações equivalentes e o segundo apenas com as observações redundantes, de tal forma que a solução de mínimos quadrados, obtida a partir do primeiro sistema linear, é também a solução do segundo sistema. Este procedimento possibilita ajustar todos os dados amostrados usando apenas as observações equivalentes (e não todas as observações originais) o que reduz a quantidade de operações e a utilização de memória pelo computador. O método EGTG consiste, primeiramente, em identificar o produto interno como sendo uma integração discreta de uma integral analítica conhecida e, em seguida, em substituir a integração discreta pela avaliação do resultado da integral analítica. Este método deve ser aplicado quando a avaliação da integral analítica exigir menor quantidade de cálculos do que a exigida para computar a avaliação da integral discreta. Para determinar as observações equivalentes, nós desenvolvemos dois algoritmos iterativos denominados DOE e DOEg. O primeiro algoritmo identifica as observações equivalentes do sistema linear como um todo, enquanto que o segundo as identifica em subsistemas disjuntos do sistema linear original. Cada iteração do algoritmo DOEg consiste de uma aplicação do algoritmo DOE em uma partição do sistema linear original. Na interpolação, o algoritmo DOE fornece uma superfície interpoladora que ajusta todos os dados permitindo a interpolação na forma global. O algoritmo DOEg, por outro lado, otimiza a interpolação na forma local uma vez que ele emprega somente as observações equivalentes, em contraste com os algoritmos existentes para a interpolação local que empregam todas as observações. Os métodos de interpolação utilizando a técnica da camada equivalente e o método da mínima curvatura foram comparados quanto às suas capacidades de recuperar os valores verdadeiros da anomalia durante o processo de interpolação. Os testes utilizaram dados sintéticos (produzidos por modelos de fontes prismáticas) a partir dos quais os valores interpolados sobre a malha regular foram obtidos. Estes valores interpolados foram comparados com os valores teóricos, calculados a partir do modelo de fontes sobre a mesma malha, permitindo avaliar a eficiência do método de interpolação em recuperar os verdadeiros valores da anomalia. Em todos os testes realizados o método da camada equivalente recuperou mais fielmente o valor verdadeiro da anomalia do que o método da mínima curvatura. Particularmente em situações de sub-amostragem, o método da mínima curvatura se mostrou incapaz de recuperar o valor verdadeiro da anomalia nos lugares em que ela apresentou curvaturas mais pronunciadas. Para dados adquiridos em níveis diferentes o método da mínima curvatura apresentou o seu pior desempenho, ao contrário do método da camada equivalente que realizou, simultaneamente, a interpolação e o nivelamento. Utilizando o algoritmo DOE foi possível aplicar a técnica da camada equivalente na interpolação (na forma global) dos 3137 dados de anomalia ar-livre de parte do levantamento marinho Equant-2 e 4941 dados de anomalia magnética de campo total de parte do levantamento aeromagnético Carauari-Norte. Os números de observações equivalentes identificados em cada caso foram, respectivamente, iguais a 294 e 299. Utilizando o algoritmo DOEg nós otimizamos a interpolação (na forma local) da totalidade dos dados de ambos os levantamentos citados. Todas as interpolações realizadas não seriam possíveis sem a aplicação do conceito de observações equivalentes. A proporção entre o tempo de CPU (rodando os programas no mesmo espaço de memória) gasto pelo método da mínima curvatura e pela camada equivalente (interpolação global) foi de 1:31. Esta razão para a interpolação local foi praticamente de 1:1.
Resumo:
Neste trabalho apresentamos um estudo da aplicação do regularizador “Variação Total” (VT) na inversão de dados geofísicos eletromagnéticos. O regularizador VT reforça a proximidade entre os parâmetros adjacentes, mas, quando a influência de uma descontinuidade é sentida nos dados, este permite mudanças abruptas sobre os parâmetros. Isso faz com que o método seja uma alternativa válida, quando os dados observados usados na inversão provém de um ambiente geológico com uma distribuição suave de condutividade, mas que pode apresentar descontinuidades em lugares como as interfaces entre as camadas geoelétricas, como na margem de uma zona de óleo ou de um corpo de sal, que podem ser zonas muito resistivas no interior de sedimentos condutivos. Quando, devido a baixa resolução nos dados, o método não tem informações o suficiente para identificar a interface, o regularizador variação total reforça a proximidade entre os parâmetros adjacentes fazendo um transição suave entre as condutividades camadas, da mesma forma que é apresentado pela suavidade global. O método de Variação Total permite que modelos menos suaves sejam alcançados porque na norma L1 a medida de desajuste entre os pares de parâmetros adjacentes, dará o mesmo valor se a variação dos parâmetros é suave ou se a variação é abrupta, o que não é o caso se o mesmo desajuste é medido na norma L2, pois em uma distribuição suave a medida do desajuste é menor, sendo assim favorecida pela minimização desta norma. O uso deste regularizador permite uma melhor estimativa do tamanho de um corpo, seja ele resistivo ou condutivo. O trabalho está apresentado na forma de três artigos, cada um descrevendo uma etapa no desenvolvimento do problema da inversão, seguindo uma sequência de complexidade crescente no problema direto. O primeiro artigo neste trabalho é intitulado “Inversão de dados do CSEM marinho 1D de meio estratificado anisotrópico com o regularizador Variação Total”. Este descreve o passo inicial no desenvolvimento do problema: a inversão de dados do CSEM marinho de modelos estratificados 1D com anisotropia na condutividade das camadas. Este problema se presta bem para este desenvolvimento, porque tem solução computacional muito mais rápida do que o 2D, e nele já estão presentes as características principais dos dados do método CSEM marinho, como a largura muito grande da faixa de amplitudes medidas em um levantamento, e a baixa resolução, inerente às baixas frequências empregadas. A anisotropia acrescenta uma dificuldade a mais no problema, por aumentar o nível de ambiguidade nos dados e demandar ainda mais informação do que no caso puramente isotrópico. Os resultados mostram que a aplicação dos vínculos de igualdade do método VT permite a melhor identificação de uma camada alvo resistiva do que a simples aplicação dos vínculos tradicionais de suavidade. Até onde podemos aferir, esta solução se mostra superior a qualquer outra já publicada para este problema. Além de ter sido muito importante para o desenvolvimento de códigos em paralelo. O segundo artigo apresentado aqui, “Inversão de dados Magnetotelúricos com o regularizador Variação Total e o uso da matriz de sensibilidade aproximada”, trata da inversão de dados do método Magnetotelúrico em ambientes 2D. Este problema demanda um esforço computacional muito maior do que o primeiro. Nele, estudamos a aplicação do método dos estados adjuntos para gerar uma boa aproximação para as derivadas necessárias para a construção da matriz de sensibilidade usada na inversão. A construção da matriz de sensibilidade é a etapa que demanda mais tempo no processo de inversão, e o uso do método de estados adjuntos foi capaz de reduzir muito este tempo, gerando derivadas com um bom nível de aproximação. Esta etapa da pesquisa foi fundamental pelo problema direto ser matematicamente e computacionalmente muito mais simples do que o do CSEM marinho 2D. Novamente em comparação com a aplicação do regularizador de suavidade global, o regularizador de Variação Total permitiu, neste problema, uma melhor delimitação das bordas de heterogeneidades bidimensionais. A terceira parte deste trabalho, apresentada no artigo “Inversão de dados do CSEM marinho 2.5D com o regularizador Variação Total e o uso da matriz de sensibilidade aproximada”, apresenta a apliação do método de Variação Total ao problema da inversão de dados CSEM marinho 2.5D. Usamos o método dos estados adjuntos para gerar uma boa aproximação para as derivadas necessárias para a construção da matriz de sensibilidade usada na inversão, acelerando assim o processo de inversão. Para deixar o processo de inversão ainda mais rápido, lançamos mão da programação em paralelo com o uso de topologia. A comparação entre a aplicação do regularizador de suavidade global, e o regularizador de Variação Total permitiu, assim como nos casos anteriores, uma melhor delimitação das bordas de heterogeneidades bidimensionais.
Resumo:
Neste trabalho compilamos informações sobre um grande número de medidas de velocidade de grupo para ondas Rayleigh do modo fundamental, com período até 100 segundos. Tais dados consistiram de informações retiradas da literatura geofísica e cobriram toda a Terra. Parte dos dados foi organizada em trabalhos anteriores e uma segunda parte foi apresentada aqui de forma inédita. Para a América do Sul, selecionamos os principais conjuntos de dados de tais ondas e elaboramos diversos perfis onde a distribuição de velocidade de ondas cisalhantes foi obtida a partir da inversão das curvas de dispersão de velocidade de grupo. Tais perfis serviram para termos uma ideia inicial da estrutura interna da Terra em nosso continente. Com o conjunto global de dados de velocidade de grupo foi possível obtermos os mapas de distribuição lateral de valores de velocidade para cada período referencial entre 20 e 100 segundos. Tais mapas foram produzidos da mesma forma que os mapas de velocidade de fase de ROSA (1986), onde a amostragem for para realizada para blocas medindo 10x10 graus, englobando toda a Terra, em projeção mercator. O valor de velocidade de grupo em cada bloco, para cada período, foi obtido a partir da inversão estocástica dos dados de anomalia de velocidade em relação aos modelos regionalizados de JORDAN (1981) com os valores de velocidade de grupo de ROSA et al. (1992). Os mapas de velocidade de grupo obtidos aqui foram então empregados, na América do Sul, com os valores de velocidade de fase dos mapas obtidos por ROSA (1986). Assim, foi possível determinarmos, em profundidade, os mapas de variação de velocidade de onda cisalhante e os mapas de distribuição de valores de densidade. Com isto, pudemos construir o primeiro mapa de profundidade do Moho (todo do Manto Superior) da América do Sul.
Resumo:
Uma técnica para a inversão de dados magnetotelúricos é apresentada neste trabalho. Dois tipos de dados são tratados aqui, dados gerados por modelos unidimensionais com anisotropia na condutividade das camadas e dados bi-dimensionais de levantamentos do método EMAP (ElectroMagnetic Array Profiling). Em ambos os casos fazemos a inversão usando vínculos aproximados de igualdade para estabilizar as soluções. Mostramos as vantagens e as limitações do uso destes vínculos nos processos de inversão. Mesmo vinculada a inversão ainda pode se tornar instável. Para inverter os dados 2-D do EMAP, apresentamos um processo que consiste de três partes: 1 – A construção de um modelo interpretativo e da aproximação inicial para a inversão a partir dos dados de seções de resistividade aparente filtradas pelo processo de filtragem do EMAP; 2 – a inclusão de uma camada de corpos pequenos aflorantes, chamada de camada destatic shift, aos modelos interpretativos para resolver as fontes de distorções estáticas que contaminam os dados; 3 – o uso dos vínculos aproximados de igualdade absoluta para estabilizar as soluções. Os dois primeiros passos nos permitem extrair o máximo de informação possível dos dados, enquanto que o uso dos vínculos de igualdade nos permite incluir informação a priori que possua significado físico e geológico. Com estes passos, obtemos uma solução estável e significativa. Estudaremos o método em dados sintéticos de modelos bi-dimensionais e em dados reais de uma linha de EMAP feita na Bacia do Paraná.
Resumo:
Neste trabalho apresentamos a solução do campo eletromagnético gerado por um dipolo elétrico horizontal em meios transversalmente isotrópicos com eixo de simetria vertical (TIV) e com eixo de simetria inclinado (TII). Para modelos unidimensionais, o campo eletromagnético foi obtido por duas metodologias distintas: (1) solução semi-analítica das equações de Maxwell com auxílio de potenciais vetores no caso TIV e (2) em modelos com anisotropia transversal inclinada o campo eletromagnético foi separado em primário e secundário, e então, o campo secundário foi calculado pelo método de elementos finitos no domínio (kx, ky, z) da transformada de Fourier. Para estruturas bidimensionais, foi aplicada a mesma metodologia usado nos modelos TII unidimensionais, onde o campo secundário foi calculado pelo método de elementos finitos no domínio (x, ky, z), da transformada de Fourier, com a utilização de malhas não estruturadas para discretização dos modelos. Estas respostas foram usados para avaliar os efeitos da anisotropia elétrica nos dados CSEM marinho 1D e 2,5D.
Resumo:
Desenvolvemos a modelagem numérica de dados sintéticos Marine Controlled Source Electromagnetic (MCSEM) usada na exploração de hidrocarbonetos para simples modelos tridimensionais usando computação paralela. Os modelos são constituidos de duas camadas estrati cadas: o mar e o sedimentos encaixantes de um delgado reservatório tridimensional, sobrepostas pelo semi-espaço correspondente ao ar. Neste Trabalho apresentamos uma abordagem tridimensional da técnica dos elementos nitos aplicada ao método MCSEM, usando a formulação da decomposição primária e secundária dos potenciais acoplados magnético e elétrico. Num pós-processamento, os campos eletromagnéticos são calculados a partir dos potenciais espalhados via diferenciação numérica. Exploramos o paralelismo dos dados MCSEM 3D em um levantamento multitransmissor, em que para cada posição do transmissor temos o mesmo processo de cálculos com dados diferentes. Para isso, usamos a biblioteca Message Passing Interface (MPI) e o modelo servidor cliente, onde o processador administrador envia os dados de entradas para os processadores clientes computar a modelagem. Os dados de entrada são formados pelos parâmetros da malha de elementos nitos, dos transmissores e do modelo geoelétrico do reservatório. Esse possui geometria prismática que representa lentes de reservatórios de hidrocarbonetos em águas profundas. Observamos que quando a largura e o comprimento horizontais desses reservatório têm a mesma ordem de grandeza, as resposta in-line são muito semelhantes e conseqüentemente o efeito tridimensional não é detectado. Por sua vez, quando a diferença nos tamanhos da largura e do comprimento do reservatório é signi cativa o efeito 3D é facilmente detectado em medidas in-line na maior dimensão horizontal do reservatório. Para medidas na menor dimensão esse efeito não é detectável, pois, nesse caso o modelo 3D se aproxima de um modelo bidimensional. O paralelismo dos dados é de rápida implementação e processamento. O tempo de execução para a modelagem multitransmissor em ambiente paralelo é equivalente ao tempo de processamento da modelagem para um único transmissor em uma máquina seqüêncial, com o acréscimo do tempo de latência na transmissão de dados entre os nós do cluster, o que justi ca o uso desta metodologia na modelagem e interpretação de dados MCSEM. Devido a reduzida memória (2 Gbytes) em cada processador do cluster do departamento de geofísica da UFPA, apenas modelos muito simples foram executados.
Resumo:
A América do Sul apresenta várias peculiaridades geomagnéticas, uma delas, é a presença do Eletrojato Equatorial, o qual se estende de leste para oeste no Brasil ao longo de aproximadamente 3500 km. Considerando-se o fato de que a influência do Eletrojato Equatorial pode ser detectada a grandes distâncias do seu centro, isto suscita o interesse em se estudar os seus efeitos na exploração magnetotelúrica no Brasil. A influência do eletrojato equatorial na prospecção magnetotelúrica tem sido modelada para meios geológicos uni e bidimensionais valendo-se para isto de soluções analíticas fechadas e de técnicas numéricas tais como elementos finitos e diferenças finitas. Em relação aos meios geológicos tridimensionais, eles tem sido modelados na forma de "camadas finas", usando o algoritmo "thin sheet". As fontes indutoras utilizadas para simular o eletrojato equatorial nestes trabalhos, tem sido linhas de corrente, eletrojatos gaussianos e eletrojatos ondulantes. Por outro lado, o objetivo principal da nossa tese foi o modelamento dos efeitos que o eletrojato equatorial provoca em estruturas tridimensionais próprias da geofísica da prospecção. Com tal finalidade, utilizamos o esquema numérico da equação integral, com as fontes indutoras antes mencionadas. De maneira similar aos trabalhos anteriores, os nossos resultados mostram que a influência do eletrojato equatorial somente acontece em frequências menores que 10-1 Hz. Este efeito decresce com a distância, mantendo-se até uns 3000 km do centro do eletrojato. Assim sendo, a presença de grandes picos nos perfis da resistividade aparente de um semi-espaço homogêneo, indica que a influência do eletrojato é notável neste tipo de meio. Estes picos se mostram com diferente magnitude para cada eletrojato simulado, sendo que a sua localização também muda de um eletrojato para outro. Entretanto, quando se utilizam modelos geo-elétricos unidimensionais mais de acordo com a realidade, tais como os meios estratificados, percebe-se que a resposta dos eletrojatos se amortece significativamente e não mostra muitas diferenças entre os diferentes tipos de eletrojato. Isto acontece por causa da dissipação da energia eletromagnética devido à presença da estratificação e de camadas condutivas. Dentro do intervalo de 3000 km, a resposta eletromagnética tridimensional pode ser deslocada para cima ou para baixo da resposta da onda plana, dependendo da localização do corpo, da frequência, do tipo de eletrojato e do meio geológico. Quando a resposta aparece deslocada para cima, existe um afastamento entre as sondagens uni e tridimensionais devidas ao eletrojato, assim como um alargamento da anomalia dos perfis que registra a presença da heterogeneidade tridimensional. Quando a resposta aparece deslocada para baixo, no entanto, há uma aproximação entre estes dois tipos de sondagens e um estreitamento da anomalia dos perfis. Por outro lado, a fase se mostra geralmente, de uma forma invertida em relação à resistividade aparente. Isto significa que quando uma sobe a outra desce, e vice-versa. Da mesma forma, comumente nas altas frequências as respostas uni e tridimensionais aparecem deslocadas, enquanto que nas baixas frequências se mostram com os mesmos valores, com exceção dos eletrojatos ondulantes com parâmetros de ondulação α = —2 e —3. Nossos resultados também mostram que características geométricas próprias das estruturas tridimensionais, tais como sua orientação em relação à direção do eletrojato e a dimensão da sua direção principal, afetam a resposta devido ao eletrojato em comparação com os resultados da onda plana. Desta forma, quando a estrutura tridimensional é rotacionada de 90°, em relação à direção do eletrojato e em torno do eixo z, existe uma troca de polarizações nas resistividades dos resultados, mas não existem mudanças nos valores da resistividade aparente no centro da estrutura. Ao redor da mesma, porém, se percebe facilmente alterações nos contornos dos mapas de resistividade aparente, ao serem comparadas com os mapas da estrutura na sua posição original. Isto se deve à persistência dos efeitos galvânicos no centro da estrutura e à presença de efeitos indutivos ao redor do corpo tridimensional. Ao alongar a direção principal da estrutura tridimensional, as sondagens magnetotelúricas vão se aproximando das sondagens das estruturas bidimensionais, principalmente na polarização XY. Mesmo assim, as respostas dos modelos testados estão muito longe de se considerar próximas das respostas de estruturas quase-bidimensionais. Porém, os efeitos do eletrojato em estruturas com direção principal alongada, são muito parecidos com aqueles presentes nas estruturas menores, considerando-se as diferenças entre as sondagens de ambos tipos de estruturas. Por outro lado, os mapas de resistividade aparente deste tipo de estrutura alongada, revelam um grande aumento nos extremos da estrutura, tanto para a onda plana como para o eletrojato. Este efeito é causado pelo acanalamento das correntes ao longo da direção principal da estrutura. O modelamento de estruturas geológicas da Bacia de Marajó confirma que os efeitos do eletrojato podem ser detetados em estruturas pequenas do tipo "horst" ou "graben", a grandes distâncias do centro do mesmo. Assim, os efeitos do eletrojato podem ser percebidos tanto nos meios estratificados como tridimensionais, em duas faixas de freqüência (nas proximidades de 10-1 Hz e para freqüências menores que 10-3 Hz), possivelmente influenciados pela presença do embasamento cristalino e a crosta inferior, respectivamente. Desta maneira, os resultados utilizando o eletrojato como fonte indutora, mostram que nas baixas freqüências as sondagens magnetotelúricas podem ser fortemente distorcidas, tanto pelos efeitos galvânicos da estrutura tridimensional como pela presença da influência do eletrojato. Conseqüêntemente, interpretações errôneas dos dados de campo podem ser cometidas, se não se corrigirem os efeitos do eletrojato equatorial ou, da mesma forma, não se utilisarem algoritmos tridimensionais para interpretar os dados, no lugar do usual modelo unidimensional de Tikhonov - Cagniard.
Resumo:
Apresentamos dois métodos de interpretação de dados de campos potenciais, aplicados à prospecção de hidrocarbonetos. O primeiro emprega dados aeromagnéticos para estimar o limite, no plano horizontal, entre a crosta continental e a crosta oceânica. Este método baseia-se na existência de feições geológicas magnéticas exclusivas da crosta continental, de modo que as estimativas das extremidades destas feições são usadas como estimativas dos limites da crosta continental. Para tanto, o sinal da anomalia aeromagnética na região da plataforma, do talude e da elevação continental é amplificado através do operador de continuação analítica para baixo usando duas implementações: o princípio da camada equivalente e a condição de fronteira de Dirichlet. A maior carga computacional no cálculo do campo continuado para baixo reside na resolução de um sistema de equações lineares de grande porte. Este esforço computacional é minimizado através do processamento por janelas e do emprego do método do gradiente conjugado na resolução do sistema de equações. Como a operação de continuação para baixo é instável, estabilizamos a solução através do funcional estabilizador de primeira ordem de Tikhonov. Testes em dados aeromagnéticos sintéticos contaminados com ruído pseudo-aleatório Gaussiano mostraram a eficiência de ambas as implementações para realçar os finais das feições magnéticas exclusivas da crosta continental, permitindo o delineamento do limite desta com a crosta oceânica. Aplicamos a metodologia em suas duas implementações a dados aeromagnéticos reais de duas regiões da costa brasileira: Foz do Amazonas e Bacia do Jequitinhonha. O segundo método delineia, simultaneamente, a topografia do embasamento de uma bacia sedimentar e a geometria de estruturas salinas contidas no pacote sedimentar. Os modelos interpretativos consistem de um conjunto de prismas bidimensionais verticais justapostos, para o pacote sedimentar e de prismas bidimensionais com seções verticais poligonais para as estruturas salinas. Estabilizamos a solução, incorporando características geométricas do relevo do embasamento e das estruturas salinas compatíveis com o ambiente geológico através dos estabilizadores da suavidade global, suavidade ponderada e da concentração de massa ao longo de direções preferenciais, além de vínculos de desigualdade nos parâmetros. Aplicamos o método a dados gravimétricos sintéticos produzidos por fontes 2D simulando bacias sedimentares intracratônicas e marginais apresentando densidade do pacote sedimentar variando com a profundidade segundo uma lei hiperbólica e abrigando domos e almofadas salinas. Os resultados mostraram que o método apresenta potencial para delinear, simultaneamente, as geometrias tanto de almofadas e domos salinos, como de relevos descontínuos do embasamento. Aplicamos o método, também, a dados reais ao longo de dois perfis gravimétricos sobre as Bacias de Campos e do Jequitinhonha e obtivemos interpretações compatíveis com a geologia da área.
Resumo:
Tradicionalmente, o método dos mínimos quadrados tem sido empregado na inversão não linear de dados de campo potencial. No caso em que as observações dos campos gravimétrico ou magnético contém apenas ruído Gaussiano. O método dos mínimos quadrados não apresenta problemas. Entretanto, quando as observações são perturbadas por ruído não Gaussiano, ou mesmo por ruído não aleatório, como é o caso de muitos ruídos geológicos, o método dos mínimos quadrados torna-se bastante ineficiente, e métodos alternativos devem ser empregados a fim de produzir interpretações realísticas. Neste trabalho, uma comparação é feita entre os métodos dos mínimos quadrados, dos mínimos absolutos e do ajuste-M, aplicados à inversão não linear de dados de campo potencial. A comparação é efetuada usando-se dados teóricos, onde diversas situações geológicas são simuladas. Os resultados mostram que na presença de ruído geológico, caracterizado por pequeno corpo raso acima do corpo principal, ou por corpo grande, adjacente ao corpo principal, o ajuste-M apresenta desempenho muito superior ao dos mínimos quadrados e dos mínimos absolutos. Na presença de ruído Gaussiano, entretanto, o ajuste-M tem um desempenho inferior aos outros dois métodos. Como o ruído Gaussiano é um ruído branco, parte dele pode ser removido por um filtro passa baixa adequado, sem muita perda do sinal, o que não ocorre com o ruído geológico que contém componentes importantes de baixo número de onda. Desse modo o ajuste-M se torna uma ferramenta importante na interpretação de áreas geologicamente complexas, onde é comum a contaminação das anomalias por ruído geológico. Os três métodos em estudo são aplicados a uma anomalia magnética real causada por uma intrusão de diabásio em forma de dique, em sedimentos arenosos da formação Piauí na Bacia do Parnaíba. Os três métodos apresentaram resultados semelhantes indicando que tanto o nível de ruído Gaussiano como geológico são baixos nesta anomalia.
Resumo:
Neste trabalho é apresentada uma análise do esquema de inversão linear para a estimativa de anisotropia na vizinhança de um receptor situado em um poço a partir de da componente vertical do vetor de vagarosidade e do vetor de polarização de ondas P medidops em experimentos de VSP walkaway multiazimutal. Independente do meio acima do geofone (homogêneo ou heterogêneo) e da forma do poço (pode ser direcional ou curvado, vertical e inclinado), a inversão é feita a partir de uma aproximação de primeira ordem em torno de um meio isotrópico de referência. O esquma da inversão é analisado considerando fatores como: o nível de ruído nos dados, o tipo de onda P, o grau de anisotropia do meio, a escolha dos parâmetros no meio isotrópico de referência e grau de heterogeneidade do meio. Os resultados são apresentados.
Resumo:
Um registro sísmico é frequentemente representado como a convolução de um pulso-fonte com a resposta do meio ao impulso, relacionada ao caminho da propagação. O processo de separação destes dois componentes da convolução é denominado deconvolução. Existe uma variedade de aproximações para o desenvolvimento de uma deconvolução. Uma das mais comuns é o uso da filtragem linear inversa, ou seja, o processamento do sinal composto, através de um filtro linear, cuja resposta de frequência é a recíproca da transformada de Fourier de um dos componentes do sinal. Obviamente, a fim de usarmos a filtragem inversa, tais componentes devem ser conhecidas ou estimadas. Neste trabalho, tratamos da aplicação a sinais sísmicos, de uma técnica de deconvolução não linear, proposta por Oppenheim (1965), a qual utiliza a teoria de uma classe de sistemas não lineares, que satisfazem um princípio generalizado de superposição, denominados de sistemas homomórficos. Tais sistemas são particularmente úteis na separação de sinais que estão combinados através da operação de convolução. O algoritmo da deconvolução homomórfica transforma o processo de convolução em uma superposição aditiva de seus componentes, com o resultado de que partes simples podem ser separadas mais facilmente. Esta classe de técnicas de filtragem representa uma generalização dos problemas de filtragem linear. O presente método oferece a considerável vantagem de que não é necessário fazer qualquer suposição prévia sobre a natureza do pulso sísmico fonte, ou da resposta do meio ao impulso, não requerendo assim, as considerações usuais de que o pulso seja de fase-mínima e que a distribuição dos impulsos seja aleatória, embora a qualidade dos resultados obtidos pela análise homomórfica seja muito sensível à razão sinal/ruído, como demonstrado.
Resumo:
O filtro de Kalman é aplicado para filtragem inversa ou problema de deconvolução. Nesta dissertação aplicamos o método de Kalman, considerado como uma outra visão de processamento no domínio do tempo, para separar sinal-ruído em perfil sônico admitido como uma realização de um processo estocástico não estacionário. Em um trabalho futuro estudaremos o problema da deconvolução. A dedução do filtro de Kalman destaca a relação entre o filtro de Kalman e o de Wiener. Estas deduções são baseadas na representação do sistema por variáveis de estado e modelos de processos aleatórios, com a entrada do sistema linear acrescentado com ruído branco. Os resultados ilustrados indicam a aplicabilidade dessa técnica para uma variedade de problemas de processamento de dados geofísicos, por exemplo, ideal para well log. O filtro de Kalman oferece aos geofísicos de exploração informações adicionais para o processamento, problemas de modelamento e a sua solução.