86 resultados para Inversão
Resumo:
Esta Tese apresenta dois estudos aplicados à inversão de dados magnetotelúricos. No primeiro deles, os parâmetros obtidos na inversão são as dimensões da malha de parametrização da subsuperfície, sendo conhecida, a priori, a resistividade de uma heterogeneidade e a do seu meio envolvente; no outro estudo, é abordado o uso de operadores de derivadas de ordem maior do que um com a finalidade de estabilizar o problema inverso. No primeiro estudo, os resultados podem ser considerados satisfatórios somente se a informação sobre as resistividades tem erro menor do que 20%. No segundo estudo, os resultados demonstram que o uso de operadores de ordem maior do que um podem ser mais eficazes do que o uso convencional do operador de primeira derivada, pois além de estabilizarem o problema inverso, esses operadores contribuem para melhorar a resolução das heterogeneidades de resistividade da subsuperfície. Ambos os estudos são inéditos, pois a prática de inversão de dados magnetotelúricos consiste de obter como resultado do problema inverso a resistividade dos prismas de uma malha de parametrização de dimensões fixas, usando como estabilizador o operador de primeira derivada. Os modelos usados nos estudos são bidimensionais e representam uma subsuperfície com uma e duas heterogeneidades de forma prismática envolvidas por ambiente homogêneo. O desempenho das técnicas foi testado com dados sintéticos com e sem ruído gaussiano, bem como dados reais do perfil COPROD2. Durante o trabalho, são, ainda, descritas as técnicas de inversão denominadas creeping e jumping e feita uma comparação e avaliação sobre elas. Mostra-se aqui que, ao contrário do que afirmam muitos pesquisadores, a inclusão de informação a priori sore os parâmetros pode ser feita na técnica do creeping com a mesma facilidade com que é feita na técnica do jumping.
Resumo:
Neste trabalho apresentamos um estudo da aplicação do regularizador “Variação Total” (VT) na inversão de dados geofísicos eletromagnéticos. O regularizador VT reforça a proximidade entre os parâmetros adjacentes, mas, quando a influência de uma descontinuidade é sentida nos dados, este permite mudanças abruptas sobre os parâmetros. Isso faz com que o método seja uma alternativa válida, quando os dados observados usados na inversão provém de um ambiente geológico com uma distribuição suave de condutividade, mas que pode apresentar descontinuidades em lugares como as interfaces entre as camadas geoelétricas, como na margem de uma zona de óleo ou de um corpo de sal, que podem ser zonas muito resistivas no interior de sedimentos condutivos. Quando, devido a baixa resolução nos dados, o método não tem informações o suficiente para identificar a interface, o regularizador variação total reforça a proximidade entre os parâmetros adjacentes fazendo um transição suave entre as condutividades camadas, da mesma forma que é apresentado pela suavidade global. O método de Variação Total permite que modelos menos suaves sejam alcançados porque na norma L1 a medida de desajuste entre os pares de parâmetros adjacentes, dará o mesmo valor se a variação dos parâmetros é suave ou se a variação é abrupta, o que não é o caso se o mesmo desajuste é medido na norma L2, pois em uma distribuição suave a medida do desajuste é menor, sendo assim favorecida pela minimização desta norma. O uso deste regularizador permite uma melhor estimativa do tamanho de um corpo, seja ele resistivo ou condutivo. O trabalho está apresentado na forma de três artigos, cada um descrevendo uma etapa no desenvolvimento do problema da inversão, seguindo uma sequência de complexidade crescente no problema direto. O primeiro artigo neste trabalho é intitulado “Inversão de dados do CSEM marinho 1D de meio estratificado anisotrópico com o regularizador Variação Total”. Este descreve o passo inicial no desenvolvimento do problema: a inversão de dados do CSEM marinho de modelos estratificados 1D com anisotropia na condutividade das camadas. Este problema se presta bem para este desenvolvimento, porque tem solução computacional muito mais rápida do que o 2D, e nele já estão presentes as características principais dos dados do método CSEM marinho, como a largura muito grande da faixa de amplitudes medidas em um levantamento, e a baixa resolução, inerente às baixas frequências empregadas. A anisotropia acrescenta uma dificuldade a mais no problema, por aumentar o nível de ambiguidade nos dados e demandar ainda mais informação do que no caso puramente isotrópico. Os resultados mostram que a aplicação dos vínculos de igualdade do método VT permite a melhor identificação de uma camada alvo resistiva do que a simples aplicação dos vínculos tradicionais de suavidade. Até onde podemos aferir, esta solução se mostra superior a qualquer outra já publicada para este problema. Além de ter sido muito importante para o desenvolvimento de códigos em paralelo. O segundo artigo apresentado aqui, “Inversão de dados Magnetotelúricos com o regularizador Variação Total e o uso da matriz de sensibilidade aproximada”, trata da inversão de dados do método Magnetotelúrico em ambientes 2D. Este problema demanda um esforço computacional muito maior do que o primeiro. Nele, estudamos a aplicação do método dos estados adjuntos para gerar uma boa aproximação para as derivadas necessárias para a construção da matriz de sensibilidade usada na inversão. A construção da matriz de sensibilidade é a etapa que demanda mais tempo no processo de inversão, e o uso do método de estados adjuntos foi capaz de reduzir muito este tempo, gerando derivadas com um bom nível de aproximação. Esta etapa da pesquisa foi fundamental pelo problema direto ser matematicamente e computacionalmente muito mais simples do que o do CSEM marinho 2D. Novamente em comparação com a aplicação do regularizador de suavidade global, o regularizador de Variação Total permitiu, neste problema, uma melhor delimitação das bordas de heterogeneidades bidimensionais. A terceira parte deste trabalho, apresentada no artigo “Inversão de dados do CSEM marinho 2.5D com o regularizador Variação Total e o uso da matriz de sensibilidade aproximada”, apresenta a apliação do método de Variação Total ao problema da inversão de dados CSEM marinho 2.5D. Usamos o método dos estados adjuntos para gerar uma boa aproximação para as derivadas necessárias para a construção da matriz de sensibilidade usada na inversão, acelerando assim o processo de inversão. Para deixar o processo de inversão ainda mais rápido, lançamos mão da programação em paralelo com o uso de topologia. A comparação entre a aplicação do regularizador de suavidade global, e o regularizador de Variação Total permitiu, assim como nos casos anteriores, uma melhor delimitação das bordas de heterogeneidades bidimensionais.
Resumo:
Neste trabalho compilamos informações sobre um grande número de medidas de velocidade de grupo para ondas Rayleigh do modo fundamental, com período até 100 segundos. Tais dados consistiram de informações retiradas da literatura geofísica e cobriram toda a Terra. Parte dos dados foi organizada em trabalhos anteriores e uma segunda parte foi apresentada aqui de forma inédita. Para a América do Sul, selecionamos os principais conjuntos de dados de tais ondas e elaboramos diversos perfis onde a distribuição de velocidade de ondas cisalhantes foi obtida a partir da inversão das curvas de dispersão de velocidade de grupo. Tais perfis serviram para termos uma ideia inicial da estrutura interna da Terra em nosso continente. Com o conjunto global de dados de velocidade de grupo foi possível obtermos os mapas de distribuição lateral de valores de velocidade para cada período referencial entre 20 e 100 segundos. Tais mapas foram produzidos da mesma forma que os mapas de velocidade de fase de ROSA (1986), onde a amostragem for para realizada para blocas medindo 10x10 graus, englobando toda a Terra, em projeção mercator. O valor de velocidade de grupo em cada bloco, para cada período, foi obtido a partir da inversão estocástica dos dados de anomalia de velocidade em relação aos modelos regionalizados de JORDAN (1981) com os valores de velocidade de grupo de ROSA et al. (1992). Os mapas de velocidade de grupo obtidos aqui foram então empregados, na América do Sul, com os valores de velocidade de fase dos mapas obtidos por ROSA (1986). Assim, foi possível determinarmos, em profundidade, os mapas de variação de velocidade de onda cisalhante e os mapas de distribuição de valores de densidade. Com isto, pudemos construir o primeiro mapa de profundidade do Moho (todo do Manto Superior) da América do Sul.
Resumo:
Uma técnica para a inversão de dados magnetotelúricos é apresentada neste trabalho. Dois tipos de dados são tratados aqui, dados gerados por modelos unidimensionais com anisotropia na condutividade das camadas e dados bi-dimensionais de levantamentos do método EMAP (ElectroMagnetic Array Profiling). Em ambos os casos fazemos a inversão usando vínculos aproximados de igualdade para estabilizar as soluções. Mostramos as vantagens e as limitações do uso destes vínculos nos processos de inversão. Mesmo vinculada a inversão ainda pode se tornar instável. Para inverter os dados 2-D do EMAP, apresentamos um processo que consiste de três partes: 1 – A construção de um modelo interpretativo e da aproximação inicial para a inversão a partir dos dados de seções de resistividade aparente filtradas pelo processo de filtragem do EMAP; 2 – a inclusão de uma camada de corpos pequenos aflorantes, chamada de camada destatic shift, aos modelos interpretativos para resolver as fontes de distorções estáticas que contaminam os dados; 3 – o uso dos vínculos aproximados de igualdade absoluta para estabilizar as soluções. Os dois primeiros passos nos permitem extrair o máximo de informação possível dos dados, enquanto que o uso dos vínculos de igualdade nos permite incluir informação a priori que possua significado físico e geológico. Com estes passos, obtemos uma solução estável e significativa. Estudaremos o método em dados sintéticos de modelos bi-dimensionais e em dados reais de uma linha de EMAP feita na Bacia do Paraná.
Resumo:
Apresentamos três novos métodos estáveis de inversão gravimétrica para estimar o relevo de uma interface arbitrária separando dois meios. Para a garantia da estabilidade da solução, introduzimos informações a priori sobre a interface a ser mapeada, através da minimização de um (ou mais) funcional estabilizante. Portanto, estes três métodos se diferenciam pelos tipos de informação físico-geológica incorporados. No primeiro método, denominado suavidade global, as profundidades da interface são estimadas em pontos discretos, presumindo-se o conhecimento a priori sobre o contraste de densidade entre os meios. Para a estabilização do problema inverso introduzimos dois vínculos: (a) proximidade entre as profundidades estimadas e verdadeiras da interface em alguns pontos fornecidas por furos de sondagem; e (b) proximidade entre as profundidades estimadas em pontos adjacentes. A combinação destes dois vínculos impõe uma suavidade uniforme a toda interface estimada, minimizando, simultaneamente em alguns pontos, os desajustes entre as profundidades conhecidas pelas sondagens e as estimadas nos mesmos pontos. O segundo método, denominado suavidade ponderada, estima as profundidades da interface em pontos discretos, admitindo o conhecimento a priori do contraste de densidade. Neste método, incorpora-se a informação geológica que a interface é suave, exceto em regiões de descontinuidades produzidas por falhas, ou seja, a interface é predominantemente suave porém localmente descontínua. Para a incorporação desta informação, desenvolvemos um processo iterativo em que três tipos de vínculos são impostos aos parâmetros: (a) ponderação da proximidade entre as profundidades estimadas em pontos adjacentes; (b) limites inferior e superior para as profundidades; e (c) proximidade entre todas as profundidades estimadas e um valor numérico conhecido. Inicializando com a solução estimada pelo método da suavidade global, este segundo método, iterativamente, acentua as feições geométricas presentes na solução inicial; ou seja, regiões suaves da interface tendem a tornar-se mais suaves e regiões abruptas tendem a tornar-se mais abruptas. Para tanto, este método atribui diferentes pesos ao vínculo de proximidade entre as profundidades adjacentes. Estes pesos são automaticamente atualizados de modo a acentuar as descontinuidades sutilmente detectadas pela solução da suavidade global. Os vínculos (b) e (c) são usados para compensar a perda da estabilidade, devida à introdução de pesos próximos a zero em alguns dos vínculos de proximidade entre parâmetros adjacentes, e incorporar a informação a priori que a região mais profunda da interface apresenta-se plana e horizontal. O vínculo (b) impõe, de modo estrito, que qualquer profundidade estimada é não negativa e menor que o valor de máxima profundidade da interface conhecido a priori; o vínculo (c) impõe que todas as profundidades estimadas são próximas a um valor que deliberadamente viola a profundidade máxima da interface. O compromisso entre os vínculos conflitantes (b) e (c) resulta na tendenciosidade da solução final em acentuar descontinuidades verticais e apresentar uma estimativa suave e achatada da região mais profunda. O terceiro método, denominado mínimo momento de inércia, estima os contrastes de densidade de uma região da subsuperfície discretizada em volumes elementares prismáticos. Este método incorpora a informação geológica que a interface a ser mapeada delimita uma fonte anômala que apresenta dimensões horizontais maiores que sua maior dimensão vertical, com bordas mergulhando verticalmente ou em direção ao centro de massa e que toda a massa (ou deficiência de massa) anômala está concentrada, de modo compacto, em torno de um nível de referência. Conceitualmente, estas informações são introduzidas pela minimização do momento de inércia das fontes em relação ao nível de referência conhecido a priori. Esta minimização é efetuada em um subespaço de parâmetros consistindo de fontes compactas e apresentando bordas mergulhando verticalmente ou em direção ao centro de massa. Efetivamente, estas informações são introduzidas através de um processo iterativo inicializando com uma solução cujo momento de inércia é próximo a zero, acrescentando, em cada iteração, uma contribuição com mínimo momento de inércia em relação ao nível de referência, de modo que a nova estimativa obedeça a limites mínimo e máximo do contraste de densidade, e minimize, simultaneamente, os desajustes entre os dados gravimétricos observados e ajustados. Adicionalmente, o processo iterativo tende a "congelar" as estimativas em um dos limites (mínimo ou máximo). O resultado final é uma fonte anômala compactada em torno do nível de referência cuja distribuição de constraste de densidade tende ao limite superior (em valor absoluto) estabelecido a priori. Estes três métodos foram aplicados a dados sintéticos e reais produzidos pelo relevo do embasamento de bacias sedimentares. A suavidade global produziu uma boa reconstrução do arcabouço de bacias que violam a condição de suavidade, tanto em dados sintéticos como em dados da Bacia do Recôncavo. Este método, apresenta a menor resolução quando comparado com os outros dois métodos. A suavidade ponderada produziu uma melhoria na resolução de relevos de embasamentos que apresentam falhamentos com grandes rejeitos e altos ângulos de mergulho, indicando uma grande potencialidade na interpretação do arcabouço de bacias extensionais, como mostramos em testes com dados sintéticos e dados do Steptoe Valley, Nevada, EUA, e da Bacia do Recôncavo. No método do mínimo momento de inércia, tomou-se como nível de referência o nível médio do terreno. As aplicações a dados sintéticos e às anomalias Bouguer do Graben de San Jacinto, California, EUA, e da Bacia do Recôncavo mostraram que, em comparação com os métodos da suavidade global e ponderada, este método estima com excelente resolução falhamentos com pequenos rejeitos sem impor a restrição da interface apresentar poucas descontinuidades locais, como no método da suavidade ponderada.
Resumo:
A inversão de momentos de fonte gravimétrica tridimensional é analisada em duas situações. Na primeira se admite conhecer apenas a anomalia. Na segunda se admite conhecer, além da anomalia, informação a priori sobre o corpo anômalo. Sem usar informação a priori, mostramos que é possível determinar univocamente todo momento, ou combinação linear de momentos, cujo núcleo polinomial seja função apenas das coordenadas Cartesianas que definem o plano de medida e que tenha Laplaciano nulo. Além disso, mostramos que nenhum momento cujo núcleo polinomial tenha Laplaciano não nulo pode ser determinado. Por outro lado, informação a priori é implicitamente introduzida se o método de inversão de momentos se baseia na aproximação da anomalia pela série truncada obtida de sua expansão em multipolos. Dado um centro de expansão qualquer, o truncamento da série impõe uma condição de regularização sobre as superfícies equipotenciais do corpo anômalo, que permite estimar univocamente os momentos e combinações lineares de momentos que são os coeficientes das funções-bases da expansão em multipolos. Assim, uma distribuição de massa equivalente à real é postulada, sendo o critério de equivalência especificado pela condição de ajuste entre os campos observado e calculado com a série truncada em momentos de uma ordem máxima pré-estabelecida. Os momentos da distribuição equivalente de massa foram identificados como a solução estacionária de um sistema de equações diferenciais lineares de 1a. ordem, para a qual se asseguram unicidade e estabilidade assintótica. Para a série retendo momentos até 2a. ordem, é implicitamente admitido que o corpo anômalo seja convexo e tenha volume finito, que ele esteja suficientemente distante do plano de medida e que a sua distribuição espacial de massa apresente três planos ortogonais de simetria. O método de inversão de momentos baseado na série truncada (IMT) é adaptado para o caso magnético. Para este caso, mostramos que, para assegurar unicidade e estabilidade assintótica, é suficiente pressupor, além da condição de regularização, a condição de que a magnetização total tenha direção e sentido constantes, embora desconhecidos. O método IMT baseado na série de 2a. ordem (IMT2) é aplicado a anomalias gravimétricas e magnéticas tridimensionais sintéticas. Mostramos que se a fonte satisfaz as condições exigidas, boas estimativas da sua massa ou vetor momento de dipolo anômalo total, da posição de seu centro de massa ou de momento de dipolo e das direções de seus três eixos principais são obtidas de maneira estável. O método IMT2 pode falhar parcialmente quando a fonte está próxima do plano de medida ou quando a anomalia tem efeitos localizados e fortes de um corpo pequeno e raso e se tenta estimar os parâmetros de um corpo grande e profundo. Definimos por falha parcial a situação em que algumas das estimativas obtidas podem não ser boas aproximações dos valores verdadeiros. Nas duas situações acima descritas, a profundidade do centro da fonte (maior) e as direções de seus eixos principais podem ser erroneamente estimadas, embora que a massa ou vetor momento de dipolo anômalo total e a projeção do centro desta fonte no plano de medida ainda sejam bem estimados. Se a direção de magnetização total não for constante, o método IMT2 pode fornecer estimativas erradas das direções dos eixos principais (mesmo se a fonte estiver distante do plano de medida), embora que os demais parâmetros sejam bem estimados. O método IMT2 pode falhar completamente se a fonte não tiver volume finito. Definimos por falha completa a situação em que qualquer estimativa obtida pode não ser boa aproximação do valor verdadeiro. O método IMT2 é aplicado a dados reais gravimétricos e magnéticos. No caso gravimétrico, utilizamos uma anomalia situada no estado da Bahia, que se supõe ser causada por um batólito de granito. Com base nos resultados, sugerimos que as massas graníticas geradoras desta anomalia tenham sido estiradas na direção NNW e adelgaçadas na direção vertical durante o evento compressivo que causou a orogênese do Sistema de Dobramentos do Espinhaço. Além disso, estimamos que a profundidade do centro de massa da fonte geradora é cerca de 20 km. No caso magnético, utilizamos a anomalia de um monte submarino situado no Golfo da Guiné. Com base nos resultados, estimamos que o paleopolo magnético do monte submarino tem latitude 50°48'S e longitude 74°54'E e sugerimos que não exista contraste de magnetização expressivo abaixo da base do monte submarino.
Resumo:
Apresentamos dois métodos de interpretação de dados de campos potenciais, aplicados à prospecção de hidrocarbonetos. O primeiro emprega dados aeromagnéticos para estimar o limite, no plano horizontal, entre a crosta continental e a crosta oceânica. Este método baseia-se na existência de feições geológicas magnéticas exclusivas da crosta continental, de modo que as estimativas das extremidades destas feições são usadas como estimativas dos limites da crosta continental. Para tanto, o sinal da anomalia aeromagnética na região da plataforma, do talude e da elevação continental é amplificado através do operador de continuação analítica para baixo usando duas implementações: o princípio da camada equivalente e a condição de fronteira de Dirichlet. A maior carga computacional no cálculo do campo continuado para baixo reside na resolução de um sistema de equações lineares de grande porte. Este esforço computacional é minimizado através do processamento por janelas e do emprego do método do gradiente conjugado na resolução do sistema de equações. Como a operação de continuação para baixo é instável, estabilizamos a solução através do funcional estabilizador de primeira ordem de Tikhonov. Testes em dados aeromagnéticos sintéticos contaminados com ruído pseudo-aleatório Gaussiano mostraram a eficiência de ambas as implementações para realçar os finais das feições magnéticas exclusivas da crosta continental, permitindo o delineamento do limite desta com a crosta oceânica. Aplicamos a metodologia em suas duas implementações a dados aeromagnéticos reais de duas regiões da costa brasileira: Foz do Amazonas e Bacia do Jequitinhonha. O segundo método delineia, simultaneamente, a topografia do embasamento de uma bacia sedimentar e a geometria de estruturas salinas contidas no pacote sedimentar. Os modelos interpretativos consistem de um conjunto de prismas bidimensionais verticais justapostos, para o pacote sedimentar e de prismas bidimensionais com seções verticais poligonais para as estruturas salinas. Estabilizamos a solução, incorporando características geométricas do relevo do embasamento e das estruturas salinas compatíveis com o ambiente geológico através dos estabilizadores da suavidade global, suavidade ponderada e da concentração de massa ao longo de direções preferenciais, além de vínculos de desigualdade nos parâmetros. Aplicamos o método a dados gravimétricos sintéticos produzidos por fontes 2D simulando bacias sedimentares intracratônicas e marginais apresentando densidade do pacote sedimentar variando com a profundidade segundo uma lei hiperbólica e abrigando domos e almofadas salinas. Os resultados mostraram que o método apresenta potencial para delinear, simultaneamente, as geometrias tanto de almofadas e domos salinos, como de relevos descontínuos do embasamento. Aplicamos o método, também, a dados reais ao longo de dois perfis gravimétricos sobre as Bacias de Campos e do Jequitinhonha e obtivemos interpretações compatíveis com a geologia da área.
Resumo:
A necessidade da adoção de modelos elásticos anisotrópicos, no contexto da sísmica de exploração, vem crescendo com o advento de novas técnicas de aquisição de dados como VSP, walkway VSP, tomografia poço a poço e levantamentos sísmicos com grande afastamento. Meios anisotrópicos, no contexto da sísmica de exploração, são modelos efetivos para explicar a propagação de ondas através de meios que apresentam padrões de heterogeneidade em escala muito menor que o comprimento de onda das ondas sísmicas. Particularmente, estes modelos são muito úteis para explicar o dado sísmico mais robusto que são as medidas de tempo de trânsito. Neste trabalho, são investigados aspectos da propagação de ondas, traçado de raios e inversão de tempos de trânsito em meios anisotrópicos. É estudada a propagação de ondas SH em meios anisotrópicos estratificados na situação mais geral onde estas ondas podem ocorrer, ou seja, em meios monoclínicos com um plano vertical de simetria especular. É mostrado que o campo de ondas SH refletido a partir de um semi-espaço estratificado, não apresenta qualquer informação sobre a possível presença de anisotropia em subsuperfície. São apresentados métodos simples e eficientes para o traçado de raios em 3D através de meios anisotrópicos estratificados, baseados no princípio de Fermat. Estes métodos constituem o primeiro passo para o desenvolvimento de algoritmos de inversão de tempos de trânsito para meios anisotrópicos em 3D, a partir de dados de VSP e walkaway VSP. Esta abordagem é promissora para determinação de modelos de velocidade, que são necessários para migração de dados sísmicos 3D na presença de anisotropia. É efetuada a análise da inversão tomográfica não linear, para meios estratificados transversalmente isotrópicos com um eixo de simetria vertical(TIV). As limitações dos dados de tempo de trânsito de eventos qP para determinação das constantes elásticas, são estabelecidas e caracterizados os efeitos da falta de cobertura angular completa na inversão tomográfica. Um algoritmo de inversão foi desenvolvido e avaliado em dados sintéticos. A aplicação do algoritmo a dados reais demonstra a consistência de meios TIV. Esta abordagem é útil para casos onde há informação a priori sobre a estratificação quase plana das formações e onde os próprios dados do levantamento poço a poço apresentam um alto grau de simetria especular em relação a um plano vertical. Também pode ser útil em interpretações preliminares, onde a estimativa de um meio estratificado, serve como modelo de fundo para se efetuar análises mais detalhadas, por exemplo, como um modelo de velocidades anisotrópico para migração, ou como um modelo de calibração para análises de AVO.
Resumo:
Tradicionalmente, o método dos mínimos quadrados tem sido empregado na inversão não linear de dados de campo potencial. No caso em que as observações dos campos gravimétrico ou magnético contém apenas ruído Gaussiano. O método dos mínimos quadrados não apresenta problemas. Entretanto, quando as observações são perturbadas por ruído não Gaussiano, ou mesmo por ruído não aleatório, como é o caso de muitos ruídos geológicos, o método dos mínimos quadrados torna-se bastante ineficiente, e métodos alternativos devem ser empregados a fim de produzir interpretações realísticas. Neste trabalho, uma comparação é feita entre os métodos dos mínimos quadrados, dos mínimos absolutos e do ajuste-M, aplicados à inversão não linear de dados de campo potencial. A comparação é efetuada usando-se dados teóricos, onde diversas situações geológicas são simuladas. Os resultados mostram que na presença de ruído geológico, caracterizado por pequeno corpo raso acima do corpo principal, ou por corpo grande, adjacente ao corpo principal, o ajuste-M apresenta desempenho muito superior ao dos mínimos quadrados e dos mínimos absolutos. Na presença de ruído Gaussiano, entretanto, o ajuste-M tem um desempenho inferior aos outros dois métodos. Como o ruído Gaussiano é um ruído branco, parte dele pode ser removido por um filtro passa baixa adequado, sem muita perda do sinal, o que não ocorre com o ruído geológico que contém componentes importantes de baixo número de onda. Desse modo o ajuste-M se torna uma ferramenta importante na interpretação de áreas geologicamente complexas, onde é comum a contaminação das anomalias por ruído geológico. Os três métodos em estudo são aplicados a uma anomalia magnética real causada por uma intrusão de diabásio em forma de dique, em sedimentos arenosos da formação Piauí na Bacia do Parnaíba. Os três métodos apresentaram resultados semelhantes indicando que tanto o nível de ruído Gaussiano como geológico são baixos nesta anomalia.
Resumo:
Este trabalho apresenta um método rápido de inversão de matrizes densas, e uma possível aplicação com métodos de Vectoring, em pré-codificação e cancelamento de crosstalk de sistemas xDSL. A família de tecnologias xDSL utiliza os pares trançados de fios de cobre telefônicos como meio físico para transmitir dados digitais. O crosstalk é a principal causa de degradação de sinais na mais nova geração de sistemas xDSL, o G.fast, e para combatê-lo são utilizadas técnicas de pré-codificação e cancelamento, chamadas de Vectoring. O método proposto, chamado de GSGR, consiste em uma abordagem diferente para o método clássico de Squared Givens Rotations (SGR), adequado a implementações em plataformas embarcadas de processamento digital de sinais. Foram realizados testes comparativos do método GSGR com métodos diretos clássicos de inversão, utilizando uma plataforma digital multicore baseada no chip TI DSP TMS320C6670 e a plataforma de software Matlab. Os resultados dos testes de inversão de matrizes usando dados reais e dados simulados mostraram que o GSGR foi superior em velocidade de execução sem apresentar perdas significativas de acurácia para a aplicação em sistemas xDSL.
Resumo:
Neste trabalho, estuda-se um novo método de inversão tomográfica de reflexão para a determinação de um modelo isotrópico e suave de velocidade por meio da aplicação, em dados sintéticos e reais, do programa Niptomo que é uma implementação do método de inversão tomográfica dos atributos cinemáticos da onda hipotética do ponto de incidência normal (PIN). Os dados de entrada para a inversão tomográfica, isto é, o tempo de trânsito e os atributos da onda PIN (raio de curvatura da frente de onda emergente e ângulo de emergência), são retirados de uma série de pontos escolhidos na seção afastamento nulo (AN) simulada, obtida pelo método de empilhamento por superfícies de reflexão comum (SRC). Normalmente, a escolha destes pontos na seção AN é realizada utilizando-se programas de picking automático, que identificam eventos localmente coerentes na seção sísmica com base nos parâmetros fornecidos pelo usuário. O picking é um dos processos mais críticos dos métodos de inversão tomográfica, pois a inclusão de dados de eventos que não sejam de reflexões primárias podem ser incluídos neste processo, prejudicando assim o modelo de velocidades a ser obtido pela inversão tomográfica. Este trabalho tem por objetivo de construir um programa de picking interativo para fornecer ao usuário o controle da escolha dos pontos de reflexões sísmicas primárias, cujos dados serão utilizados na inversão tomográfica. Os processos de picking e inversão tomográfica são aplicados nos dados sintéticos Marmousi e nos dados da linha sísmica 50-RL-90 da Bacia do Tacutu. Os resultados obtidos mostraram que o picking interativo para a escolha de pontos sobre eventos de reflexões primárias favorece na obtenção de um modelo de velocidade mais preciso.
Resumo:
Apesar das grandes vantagens decorrentes da interpretação conjunta de dados geofísicos, a aplicação da inversão simultânea destes dados tem sido pouco estudada, principalmente a nível de simulação. Este trabalho foi desenvolvido com intuito de cobrir parte desta deficiência. Neste trabalho, foi utilizado o método dos mínimos quadrados para comparar os resultados obtidos a partir de: a) inversão dos grupos de dados gravimétricos, magnéticos e resistivos tomados separadamente; b) inversão simultânea destes grupos de dados combinados dois a dois; c) inversão simultânea dos três grupos de dados. O trabalho é desenvolvido a partir de dados teóricos onde são simuladas diversas situações geológicas. A comparação dos resultados é efetuada a partir das estimativas dos parâmetros obtidos por cada inversão, pelos desvios padrões de cada parâmetro (inversão gravimetria-magnetometria para o ruído Gaussiano) e pela redução da ambiguidade, manifestada pela dependência das estimativas em relação a aproximação inicial dos parâmetros. Na maioria dos casos estudados as inversões conjuntas dos dados combinados dois a dois apresentam resultados bem superiores àqueles obtidos usando-se apenas um dos grupos de dados isoladamente, seja nas estimativas dos parâmetros, seja na redução da ambiguidade. Por sua vez, a inversão conjunta dos três grupos de dados apresentam resultados semelhantes às inversões dos grupos de dados combinados dois a dois, contudo em alguns casos a inversão conjunta dos três grupos de dados é a única totalmente independente da aproximação inicial. Dados gravimétricos e magnéticos de duas anomalias reais foram invertidos, produzindo sempre curvas estimadas bem ajustadas aos valores observados.
Resumo:
O trabalho em pauta tem como objetivo o modelamento da crosta, através da inversão de dados de refração sísmica profunda, segundo camadas planas horizontais lateralmente homogêneas, sobre um semi-espaço. O modelo direto é dado pela expressão analítica da curva tempo-distância como uma função que depende da distância fonte-estação e do vetor de parâmetros velocidades e espessuras de cada camada, calculado segundo as trajetórias do raio sísmico, regidas pela Lei de Snell. O cálculo dos tempos de chegada por este procedimento, exige a utilização de um modelo cujas velocidades sejam crescentes com a profundidade, de modo que a ocorrência das camadas de baixa velocidade (CBV) é contornada pela reparametrização do modelo, levando-se em conta o fato de que o topo da CBV funciona apenas como um refletor do raio sísmico, e não como refrator. A metodologia de inversão utilizada tem em vista não só a determinação das soluções possíveis, mas também a realização de uma análise sobre as causas responsáveis pela ambiguidade do problema. A região de pesquisa das prováveis soluções é vinculada segundo limites superiores e inferiores para cada parâmetro procurado, e pelo estabelecimento de limites superiores para os valores de distâncias críticas, calculadas a partir do vetor de parâmetros. O processo de inversão é feito utilizando-se uma técnica de otimização do ajuste de curvas através da busca direta no espaço dos parâmetros, denominado COMPLEX. Esta técnica apresenta a vantagem de poder ser utilizada com qualquer função objeto, e ser bastante prática na obtenção de múltiplas soluções do problema. Devido a curva tempo-distância corresponder ao caso de uma multi-função, o algoritmo foi adaptado de modo a minimizar simultaneamente várias funções objetos, com vínculos nos parâmetros. A inversão é feita de modo a se obter um conjunto de soluções representativas do universo existente. Por sua vez, a análise da ambiguidade é realizada pela análise fatorial modo-Q, através da qual é possível se caracterizar as propriedades comuns existentes no elenco das soluções analisadas. Os testes com dados sintéticos e reais foram feitos tendo como aproximação inicial ao processo de inversão, os valores de velocidades e espessuras calculados diretamente da interpretação visual do sismograma. Para a realização dos primeiros, utilizou-se sismogramas calculados pelo método da refletividade, segundo diferentes modelos. Por sua vez, os testes com dados reais foram realizados utilizando-se dados extraídos de um dos sismogramas coletados pelo projeto Lithospheric Seismic Profile in Britain (LISPB), na região norte da Grã-Bretanha. Em todos os testes foi verificado que a geometria do modelo possui um maior peso na ambiguidade do problema, enquanto os parâmetros físicos apresentam apenas suaves variações, no conjunto das soluções obtidas.
Resumo:
A presente Dissertação de Mestrado tem como objetivo o estudo do problema de inversão sísmica baseada em refletores planos para arranjo fonte-comum (FC) e ponto-médiocomum (PMC). O modelo direto é descrito por camadas homogêneas, isotrópicas com interfaces plano-horizontais. O problema é relacionado ao empilhamento NMO baseado na otimização da função semblance, para seções PMC corrigidas de sobretempo normal (NMO). O estudo foi baseado em dois princípios. O primeiro princípio adotado foi de combinar dois grupos de métodos de inversão: um Método Global e um Método Local. O segundo princípio adotado foi o de cascata, segundo a teoria Wichert-Herglotz-Bateman, que estabelece que para conhecer uma camada inferior tem-se que conhecer primeiro a camada superior (dissecação). A aplicação do estudo é voltada à simulação sísmica de Bacia Sedimentar do Solimões e de Bacia Marinha para se obter uma distribuição local 1D de velocidades e espessuras para a subsuperfície em horizontes alvo. Sendo assim, limitamos a inversão entre 4 e 11 refletores, uma vez que na prática a indústria limita uma interpretação realizada apenas em número equivalente de 3 a 4 refletores principais. Ressalta-se que este modelo é aplicável como condição inicial ao imageamento de seções sísmicas em regiões geologicamente complexas com variação horizontal suave de velocidades. Os dados sintéticos foram gerados a partir dos modelos relacionados a informações geológicas, o que corresponde a uma forte informação a priori no modelo de inversão. Para a construção dos modelos relacionados aos projetos da Rede Risco Exploratório (FINEP) e de formação de recursos humanos da ANP em andamento, analisamos os seguintes assuntos relevantes: (1) Geologia de bacias sedimentares terrestre dos Solimões e ma rinha (estratigráfica, estrutural, tectônica e petrolífera); (2) Física da resolução vertical e horizontal; e (3) Discretização temporal-espacial no cubo de multi-cobertura. O processo de inversão é dependente do efeito da discretização tempo-espacial do campo de ondas, dos parâmetros físicos do levantamento sísmico, e da posterior reamostragem no cubo de cobertura múltipla. O modelo direto empregado corresponde ao caso do operador do empilhamento NMO (1D), considerando uma topografia de observação plana. O critério básico tomado como referência para a inversão e o ajuste de curvas é a norma 2 (quadrática). A inversão usando o presente modelo simples é computacionalmente atrativa por ser rápida, e conveniente por permitir que vários outros recursos possam ser incluídos com interpretação física lógica; por exemplo, a Zona de Fresnel Projetada (ZFP), cálculo direto da divergência esférica, inversão Dix, inversão linear por reparametrização, informações a priori, regularização. A ZFP mostra ser um conceito út il para estabelecer a abertura da janela espacial da inversão na seção tempo-distância, e representa a influência dos dados na resolução horizontal. A estimativa da ZFP indica uma abertura mínima com base num modelo adotado, e atualizável. A divergência esférica é uma função suave, e tem base física para ser usada na definição da matriz ponderação dos dados em métodos de inversão tomográfica. A necessidade de robustez na inversão pode ser analisada em seções sísmicas (FC, PMC) submetida a filtragens (freqüências de cantos: 5;15;75;85; banda-passante trapezoidal), onde se pode identificar, comparar e interpretar as informações contidas. A partir das seções, concluímos que os dados são contaminados com pontos isolados, o que propõe métodos na classe dos considerados robustos, tendo-se como referência a norma 2 (quadrados- mínimos) de ajuste de curvas. Os algoritmos foram desenvolvidos na linguagem de programação FORTRAN 90/95, usando o programa MATLAB para apresentação de resultados, e o sistema CWP/SU para modelagem sísmica sintética, marcação de eventos e apresentação de resultados.
Resumo:
A ambiguidade na inversão de dados de geofísica de poço é estudada através da análise fatorial Q-modal. Este método é baseado na análise de um número finito de soluções aceitáveis, que são ordenadas, no espaço de soluções, segundo a direção de maior ambiguidade. A análise da variação dos parâmetros ao longo dessas soluções ordenadas permite caracterizar aqueles que são mais influentes na ambiguidade. Como a análise Q-modal é baseada na determinação de uma região de ambiguidade, obtida de modo empírico a partir de um número finito de soluções aceitáveis, é possível analisar a ambiguidade devida não só a erros nas observações, como também a pequenos erros no modelo interpretativo. Além disso, a análise pode ser aplicada mesmo quando os modelos interpretativos ou a relação entre os parâmetros não são lineares. A análise fatorial é feita utilizando-se dados sintéticos, e então comparada com a análise por decomposição em valores singulares, mostrando-se mais eficaz, uma vez que requer premissas menos restritivas, permitindo, desse modo, caracterizar a ambiguidade de modo mais realístico. A partir da determinação dos parâmetros com maior influência na ambiguidade do modelo é possível reparametrizá-lo, agrupando-os em um único parâmetro, redefinindo assim o modelo interpretativo. Apesar desta reparametrização incorrer na perda de resolução dos parâmetros agrupados, o novo modelo tem sua ambiguidade bastante reduzida.