128 resultados para infrared spectroscopy,chemometrics,least squares support vector machines
em Reposit
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The pipe flow of a viscous-oil-gas-water mixture such as that involved in heavy oil production is a rather complex thereto-fluid dynamical problem. Considering the complexity of three-phase flow, it is of fundamental importance the introduction of a flow pattern classification tool to obtain useful information about the flow structure. Flow patterns are important because they indicate the degree of mixing during flow and the spatial distribution of phases. In particular, the pressure drop and temperature evolution along the pipe is highly dependent on the spatial configuration of the phases. In this work we investigate the three-phase water-assisted flow patterns, i.e. those configurations where water is injected in order to reduce friction caused by the viscous oil. Phase flow rates and pressure drop data from previous laboratory experiments in a horizontal pipe are used for flow pattern identification by means of the 'support vector machine' technique (SVM).
Resumo:
The use of mobile robots turns out to be interesting in activities where the action of human specialist is difficult or dangerous. Mobile robots are often used for the exploration in areas of difficult access, such as rescue operations and space missions, to avoid human experts exposition to risky situations. Mobile robots are also used in agriculture for planting tasks as well as for keeping the application of pesticides within minimal amounts to mitigate environmental pollution. In this paper we present the development of a system to control the navigation of an autonomous mobile robot through tracks in plantations. Track images are used to control robot direction by pre-processing them to extract image features. Such features are then submitted to a support vector machine and an artificial neural network in order to find out the most appropriate route. A comparison of the two approaches was performed to ascertain the one presenting the best outcome. The overall goal of the project to which this work is connected is to develop a real time robot control system to be embedded into a hardware platform. In this paper we report the software implementation of a support vector machine and of an artificial neural network, which so far presented respectively around 93% and 90% accuracy in predicting the appropriate route. (C) 2013 The Authors. Published by Elsevier B.V. Selection and peer review under responsibility of the organizers of the 2013 International Conference on Computational Science
Resumo:
Since the beginning, some pattern recognition techniques have faced the problem of high computational burden for dataset learning. Among the most widely used techniques, we may highlight Support Vector Machines (SVM), which have obtained very promising results for data classification. However, this classifier requires an expensive training phase, which is dominated by a parameter optimization that aims to make SVM less prone to errors over the training set. In this paper, we model the problem of finding such parameters as a metaheuristic-based optimization task, which is performed through Harmony Search (HS) and some of its variants. The experimental results have showen the robustness of HS-based approaches for such task in comparison against with an exhaustive (grid) search, and also a Particle Swarm Optimization-based implementation.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In the pattern recognition research field, Support Vector Machines (SVM) have been an effectiveness tool for classification purposes, being successively employed in many applications. The SVM input data is transformed into a high dimensional space using some kernel functions where linear separation is more likely. However, there are some computational drawbacks associated to SVM. One of them is the computational burden required to find out the more adequate parameters for the kernel mapping considering each non-linearly separable input data space, which reflects the performance of SVM. This paper introduces the Polynomial Powers of Sigmoid for SVM kernel mapping, and it shows their advantages over well-known kernel functions using real and synthetic datasets.
Resumo:
During the petroleum well drilling operation many mechanical and hydraulic parameters are monitored by an instrumentation system installed in the rig called a mud-logging system. These sensors, distributed in the rig, monitor different operation parameters such as weight on the hook and drillstring rotation. These measurements are known as mud-logging records and allow the online following of all the drilling process with well monitoring purposes. However, in most of the cases, these data are stored without taking advantage of all their potential. On the other hand, to make use of the mud-logging data, an analysis and interpretationt is required. That is not an easy task because of the large volume of information involved. This paper presents a Support Vector Machine (SVM) used to automatically classify the drilling operation stages through the analysis of some mud-logging parameters. In order to validate the results of SVM technique, it was compared to a classification elaborated by a Petroleum Engineering expert. © 2006 IEEE.
Resumo:
Due to the increased incidence of skin cancer, computational methods based on intelligent approaches have been developed to aid dermatologists in the diagnosis of skin lesions. This paper proposes a method to classify texture in images, since it is an important feature for the successfully identification of skin lesions. For this is defined a feature vector, with the fractal dimension of images through the box-counting method (BCM), which is used with a SVM to classify the texture of the lesions in to non-irregular or irregular. With the proposed solution, we could obtain an accuracy of 72.84%. © 2012 AISTI.
Resumo:
The use of mobile robots turns out to be interesting in activities where the action of human specialist is difficult or dangerous. Mobile robots are often used for the exploration in areas of difficult access, such as rescue operations and space missions, to avoid human experts exposition to risky situations. Mobile robots are also used in agriculture for planting tasks as well as for keeping the application of pesticides within minimal amounts to mitigate environmental pollution. In this paper we present the development of a system to control the navigation of an autonomous mobile robot through tracks in plantations. Track images are used to control robot direction by preprocessing them to extract image features. Such features are then submitted to a support vector machine in order to find out the most appropriate route. The overall goal of the project to which this work is connected is to develop a real time robot control system to be embedded into a hardware platform. In this paper we report the software implementation of a support vector machine, which so far presented around 93% accuracy in predicting the appropriate route. © 2012 IEEE.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The fast sequential multi-element determination of Ca, Mg, K, Cu, Fe, Mn and Zn in plant tissues by high-resolution continuum source flame atomic absorption spectrometry is proposed. For this, the main lines for Cu (324.754 nm), Fe (248.327 nm), Mn (279.482 nm) and Zn (213.857 nm) were selected, and the secondary lines for Ca (239.856 nm), Mg (202.582 nm) and K (404.414 nm) were evaluated. The side pixel registration approach was studied to reduce sensitivity and extend the linear working range for Mg by measuring at wings (202.576 nm; 202.577 nm; 202.578 nm; 202.580 nm: 202.585 nm; 202.586 nm: 202.587 nm; 202.588 nm) of the secondary line. The interference caused by NO bands on Zn at 213.857 nm was removed using the least-squares background correction. Using the main lines for Cu, Fe, Mn and Zn, secondary lines for Ca and K, and line wing at 202.588 nm for Mg, and 5 mL min(-1) sample flow-rate, calibration curves in the 0.1-0.5 mg L-1 Cu, 0.5-4.0 mg L-1 Fe, 0.5-4.0 mg L-1 Mn, 0.2-1.0 mg L-1 Zn, 10.0-100.0 mg L-1 Ca, 5.0-40.0 mg L-1 Mg and 50.0-250.0 mg L-1 K ranges were consistently obtained. Accuracy and precision were evaluated after analysis of five plant standard reference materials. Results were in agreement at a 95% confidence level (paired t-test) with certified values. The proposed method was applied to digests of sugar-cane leaves and results were close to those obtained by line-source flame atomic absorption spectrometry. Recoveries of Ca, Mg, K, Cu, Fe, Mn and Zn in the 89-103%, 84-107%, 87-103%, 85-105%, 92-106%, 91-114%, 96-114% intervals, respectively, were obtained. The limits of detection were 0.6 mg L-1 Ca, 0.4 mg L-1 Mg, 0.4 mg L-1 K, 7.7 mu g L-1 Cu, 7.7 mu g L-1 Fe, 1.5 mu g L-1 Mn and 5.9 mu g L-1 Zn. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper presents a novel, fast and accurate appearance-based method for infrared face recognition. By introducing the Optimum-Path Forest classifier, our objective is to get good recognition rates and effectively reduce the computational effort. The feature extraction procedure is carried out by PCA, and the results are compared to two other well known supervised learning classifiers; Artificial Neural Networks and Support Vector Machines. The achieved performance asserts the promise of the proposed framework. ©2009 IEEE.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)