24 resultados para data-driven Stochastic Subspace Identification (SSI-data)

em Reposit


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work shows a computational methodology for the determination of synchronous machines parameters using load rejection test data. The quadrature axis parameters are obtained with a rejection under an arbitrary reference, reducing the present difficulties.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work shows a computational methodology for the determination of synchronous machines parameters using load rejection test data. By machine modeling one can obtain the quadrature parameters through a load rejection under an arbitrary reference, reducing the present difficulties. The proposed method is applied to a real machine.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper proposes a method by simulated annealing for building roof contours identification from LiDAR-derived digital elevation model. Our method is based on the concept of first extracting aboveground objects and then identifying those objects that are building roof contours. First, to detect aboveground objects (buildings, trees, etc.), the digital elevation model is segmented through a recursive splitting technique followed by a region merging process. Vectorization and polygonization are used to obtain polyline representations of the detected aboveground objects. Second, building roof contours are identified from among the aboveground objects by optimizing a Markov-random-field-based energy function that embodies roof contour attributes and spatial constraints. The solution of this function is a polygon set corresponding to building roof contours and is found by using a minimization technique, like the Simulated Annealing algorithm. Experiments carried out with laser scanning digital elevation model showed that the methodology works properly, as it provides roof contour information with approximately 90% shape accuracy and no verified false positives.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Gravitational waves from a variety of sources are predicted to superpose to create a stochastic background. This background is expected to contain unique information from throughout the history of the Universe that is unavailable through standard electromagnetic observations, making its study of fundamental importance to understanding the evolution of the Universe. We carry out a search for the stochastic background with the latest data from the LIGO and Virgo detectors. Consistent with predictions from most stochastic gravitational-wave background models, the data display no evidence of a stochastic gravitational-wave signal. Assuming a gravitational-wave spectrum of Omega(GW)(f) = Omega(alpha)(f/f(ref))(alpha), we place 95% confidence level upper limits on the energy density of the background in each of four frequency bands spanning 41.5-1726 Hz. In the frequency band of 41.5-169.25 Hz for a spectral index of alpha = 0, we constrain the energy density of the stochastic background to be Omega(GW)(f) < 5.6 x 10(-6). For the 600-1000 Hz band, Omega(GW)(f) < 0.14(f/900 Hz)(3), a factor of 2.5 lower than the best previously reported upper limits. We find Omega(GW)(f) < 1.8 x 10(-4) using a spectral index of zero for 170-600 Hz and Omega(GW)(f) < 1.0(f/1300 Hz)(3) for 1000-1726 Hz, bands in which no previous direct limits have been placed. The limits in these four bands are the lowest direct measurements to date on the stochastic background. We discuss the implications of these results in light of the recent claim by the BICEP2 experiment of the possible evidence for inflationary gravitational waves.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The taxonomy of the N(2)-fixing bacteria belonging to the genus Bradyrhizobium is still poorly refined, mainly due to conflicting results obtained by the analysis of the phenotypic and genotypic properties. This paper presents an application of a method aiming at the identification of possible new clusters within a Brazilian collection of 119 Bradryrhizobium strains showing phenotypic characteristics of B. japonicum and B. elkanii. The stability was studied as a function of the number of restriction enzymes used in the RFLP-PCR analysis of three ribosomal regions with three restriction enzymes per region. The method proposed here uses Clustering algorithms with distances calculated by average-linkage clustering. Introducing perturbations using sub-sampling techniques makes the stability analysis. The method showed efficacy in the grouping of the species B. japonicum and B. elkanii. Furthermore, two new clusters were clearly defined, indicating possible new species, and sub-clusters within each detected cluster. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Background: The genome-wide identification of both morbid genes, i.e., those genes whose mutations cause hereditary human diseases, and druggable genes, i.e., genes coding for proteins whose modulation by small molecules elicits phenotypic effects, requires experimental approaches that are time-consuming and laborious. Thus, a computational approach which could accurately predict such genes on a genome-wide scale would be invaluable for accelerating the pace of discovery of causal relationships between genes and diseases as well as the determination of druggability of gene products.Results: In this paper we propose a machine learning-based computational approach to predict morbid and druggable genes on a genome-wide scale. For this purpose, we constructed a decision tree-based meta-classifier and trained it on datasets containing, for each morbid and druggable gene, network topological features, tissue expression profile and subcellular localization data as learning attributes. This meta-classifier correctly recovered 65% of known morbid genes with a precision of 66% and correctly recovered 78% of known druggable genes with a precision of 75%. It was than used to assign morbidity and druggability scores to genes not known to be morbid and druggable and we showed a good match between these scores and literature data. Finally, we generated decision trees by training the J48 algorithm on the morbidity and druggability datasets to discover cellular rules for morbidity and druggability and, among the rules, we found that the number of regulating transcription factors and plasma membrane localization are the most important factors to morbidity and druggability, respectively.Conclusions: We were able to demonstrate that network topological features along with tissue expression profile and subcellular localization can reliably predict human morbid and druggable genes on a genome-wide scale. Moreover, by constructing decision trees based on these data, we could discover cellular rules governing morbidity and druggability.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The golden-striped salamander (Chioglossa lusitanica) is an endemic species inhabiting stream-side habitats in mountainous areas in the northwestern Iberian Peninsula. This salamandrid is listed in the IUCN Red Data Book as a threatened species. The combination of bioclimatic modeling of the species distribution and multivariate analysis of genetic and phenotypic data strengthens previous hypotheses concerning the historical biogeography of C. lusitanica: the Pleistocene subdivision of the species' range and a process of postglacial recolonization. Discrepancies between bioclimatic modeling predictions and the present-day distribution suggest that the species may still be expanding its range northwards. We propose the identification of two distinct units for the conservation of the species and suggest that this information should be taken into account in defining key areas for conservation in the Iberian Peninsula.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

In this paper we focus on providing coordinated visual strategies to assist users in performing tasks driven by the presence of temporal and spatial attributes. We introduce temporal visualization techniques targeted at such tasks, and illustrate their use with an application involving a climate classification process. The climate classification requires extensive Processing of a database containing daily rain precipitation values collected along over fifty years at several spatial locations in the São Paulo state, Brazil. We identify user exploration tasks typically conducted as part of the data preparation required in this process, and then describe how such tasks may be assisted by the multiple visual techniques provided. Issues related to the use of the multiple techniques by an end-user are also discussed.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Two stochastic models have been fitted to daily rainfall data for an interior station of Brazil. Of these two models, the results show a better fit to describe the data, by truncated negative probability model in comparison with Markov chain probability model. Kolmogorov-Smirnov test is applied for significance for these models. © 1983 Springer-Verlag.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

This paper presents an intelligent search strategy for the conforming bad data errors identification in the generalized power system state estimation, by using the tabu search meta heuristic. The main objective is to detect critical errors involving both analog and topology errors. These errors are represented by conforming errors, whose nature affects measurements that actually do not present bad data and also the conventional bad data identification strategies based on the normalized residual methods. ©2005 IEEE.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

In the present study, allele frequency distributions for the 15 STR loci included in the PowerPlex® 16 Systems (Promega) were obtained from a sample of 55 unrelated individuals living in Araraquara region (SP, Brazil). The frequency of each allele for each locus tested, the exact test and the forensic and paternity parameters were calculated using POWERSTATS ver. 1.2 (Promega) and GENEPOP ver. 3.2 software. All loci are in the Hardy-Weinberg equilibrium and they reached a combined power discrimination of 0.999999999999999973 and combined power exclusion of 0.99999987, showing to be a powerful tool for paternity testing and individual identification in the population analyzed. © 2005 Elsevier B.V. All rights reserved.