262 resultados para TiO2-ZrO2 composite
em Reposit
Resumo:
The present study is concerned with the structural and electronic properties of the TiO2/SnO2/TiO2 and SnO2/TiO2/SnO2 composite systems. Periodic quantum mechanical method with density functional theory at the B3LYP level has been carried out. Relaxed surface energies, structural characteristics and electronic properties of the (I 10), (0 10), (10 1) and (00) low-index rutile surfaces for TiO2/SnO2/TiO2 and SnO2/TiO2/SnO2 models are studied. For, comparison purposes, the bare rutile TiO2 and SnO2 structures are also analyzed and compared with previous theoretical and experimental data. The calculated surface energy for both rutile TiO2 and SnO2 surfaces follows the sequence (110) < (010) < (101) < (001) and the energy increases as (010) < (101) < (110) < (001) and (010) approximate to (110) < (101) < (001) for SnO2/TiO2/SnO2 and TiO2/SnO2/TiO2 composite systems, respectively. SnO2/TiO2/SnO2 presents larger values of surface energy than the individual SnO2 and TiO2 metal oxides and the TiO2/SnO2/TiO2 system renders surface energy values of the same order that the TiO2 and lower than the SnO2. An analysis of the electronic structure of the TiO2/SnO2/TiO2 and SnO2/TiO2/SnO2 systems shows that the main characteristics of the upper part of the valence bands for all the studied surfaces are dominated by the external layers, i.e., by the TiO2 and the SnO2, respectively, and the topology of the lower part of the conduction bands looks like the core layers. There is an energy stabilization of both valence band top and conduction band bottom for (110) and (010) surfaces of the SnO2/TiO2/SnO2 composite system in relation to their core TiO2, whereas an opposite trend is found for the same surfaces of the TiO2/SnO2/TiO2 composite system in relation to the bare SnO2. The present theoretical results may explain the growth of TiO2@SnO2 bimorph composite nanotape.
Resumo:
Dielectric ceramics have been widely investigated and used for microwave applications such as resonators and filters. The present study deals with the influence of sintering temperature on microwave dielectric properties of TiO2 ceramics with 10, 20, and 30 wt% ZrO2. Three compositions have been developed through mixing procedures and then tested for each sintering temperature: 1500 and 1400°C. X-ray diffraction and scanning electron microscopy are carried out aiming to explain the ceramic behavior of each sample. The dielectric constants of different ceramics for both temperatures varied from 85.4 to 62.6, while their quality factor due to dielectric losses varied from 3110 to 1630. The Q decrease is attributed to the non uniform grain growth and to the obtained crystalline phases. The best microwave parameters were obtained for the ceramics sintered at 1400°C, which can be applied in microwave circuits as dielectric resonators. © (2010) Trans Tech Publications.
Resumo:
Metal oxidenanocomposites were prepared by two different routes: polyol and sol-gel. Characterization by X ray diffraction showed that the first processproducesdirectly a two-phase material, while the sol-gelpowder never showed second phase below 600 degrees C. Light spectroscopy of the treated powders indicated similarities for the processed materials. Although the overall material compositions are about the same, different structural characteristics are found for each processing. With the exception of Ti-Zn materials, all the double metal oxide powders showed higher absorbance than either TiO2 powder.
Resumo:
Nanostructured composites based on titanium dioxide have been studied in order to improve optical and photo-catalytic properties, as well as their performance in gas sensors. In this work, titanium and tin dioxides were simultaneously synthesized by the polyol method resulting in TiO2 platelet coated with SnO2 nanoparticles as was observed by scanning electron microscopy. The thermal analysis showed that the combined synthesis promotes more easily the crystallization of the TiO2 rutile phase. The composite obtained after heat treatment at 500 degrees C showed to be formed of almost only rutile phases of both oxides. The optical properties analyzed by UV-Vis spectroscopy showed that the combined oxides have higher absorbance, which reinforces a model found in the literature based on the flow of photo-generated electrons to the conduction band of SnO2 delaying the recombination of charges.
Resumo:
For microwave applications, including mobile and satellite communications, ceramic resonators should have a high dielectric constant, low dielectric losses, and high frequency stability. In this sense, TiO2-ZrO 2 ceramics have been investigated as a function of sintering behavior, phase composition, and microstructure. The ceramics were densified reaching a value of about 86% of theoretical density at 1400°C sintering temperature. The ceramics are prepared by mixing raw materials with the following TiO2-ZrO2 weight % ratio: 100 to 0, 90 to 10, and 80 to 20, respectively. The measured dielectric constants are between 79 and 88 values, while the quality factor due to dielectric losses are between 2820 and 5170. These results point out the influence of Ti/Zr ratio on controlling the dielectric properties. © (2010) Trans Tech Publications.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Nanostructured composites based on titanium dioxide have been studied in order to improve optical and photo-catalytic properties, as well as their performance in gas sensors. In this work, titanium and tin dioxides were simultaneously synthesized by the polyol method resulting in TiO2 platelet coated with SnO2 nanoparticles as was observed by scanning electron microscopy. The thermal analysis showed that the combined synthesis promotes more easily the crystallization of the TiO2 rutile phase. The composite obtained after heat treatment at 500 °C showed to be formed of almost only rutile phases of both oxides. The optical properties analyzed by UV-Vis spectroscopy showed that the combined oxides have higher absorbance, which reinforces a model found in the literature based on the flow of photo-generated electrons to the conduction band of SnO2 delaying the recombination of charges.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Among the researches on preparation and test of nanostructured materials, titanium dioxide and zinc oxide have been the most frequent studied oxides. In order to extend their properties, composites have been prepared using three different methods: Polyol Method, Sol-gel Process and a combination of the two processes (hybrid process). Recent research showed best properties in composite materials than in pure oxides. In this work is presented the preparation and the structural characterization of ZnO-TiO2 composite nanostructures to be tested for their performance in electrocatalysis and in further trial on photovoltaic cells.
Resumo:
We report here the utilization of atomid layer deposition to passivate surface map states in mosoporous TiO2 nanoparticles for solid state dye sensitized solar cells based on 9,9'-spirobifluorene (spiro-OMeTAD). By depositing ZrO2 films with angstrom-level precision, coating the mesoporous TiO2 produces over a two-fold enhancement in short-circuit current density, as compared to a control device. Impedance spectroscopy measurements provide evidence that the ZrO2 coating reduces recombination lossed at the TiO2/spiro-OMeTAD interface and passivates localized surface states. Low-frequency negative capacitances, frequently observed in nanocomposite solar cells, have been associated with the surface-state mediated charge transfer from TiO2 to the spiro-OMeTAD.
Resumo:
Substitutions of Ti and Cu in ZrO2.MgO (Z), cause transformation from monoclinic (m) to cubic (c) and tetragonal (t). According to the vacancy model and solid Solution formation models, neither CuO nor TiO2 cause zirconia stabilization, which derives front other phenomena. Data analysis by TMA using the CRH (constant rate of heating) method shows a solid state reaction of ZrO2.MgO.TiO2 (Z.TiO2) demonstrating a dominant mechanism of volume diffusion (n = 1). However, the sintering of ZrO2.MgO.CuO (Z.CuO) shows a viscous flow mechanism (n = 0), a similar phenomena to that of by sintering of glass. Transformations, such as: CuO to Cu2O at 1000 degreesC, ZrO2 (m) to ZrO2 (t) at 1100 degreesC and Cu2O (s) to Cu2O (l) at 1230 degreesC cause successive rearrangements of microstructure inside of region I (sintering process) and lead to interpretation errors when the Bannister equation is used. (C) 2003 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
Resumo:
The purpose of this study was to evaluate the compressive strength and color changes of one composite resin modified by TiO2 nanoparticles and their distribution by SEM.
Resumo:
We report on electrical relaxation measurements of (1-x)NH4H2PO4-xTiO(2) (x = 0.1) composites by admittance spectroscopy, in the 40-Hz-5-MHz frequency range and at temperatures between 303 and 563 K. Simultaneous thermal and electrical measurements on the composites identify a stable crystalline phase between 373 and 463 K. The real part of the conductivity, sigma', shows a power-law frequency dependence below 523 K, which is well described by Jonscher's expression sigma' = sigma(0)(1 + (omega/omega(p))(n)), where sigma(0) is the dc conductivity, omega(p)/2 pi = f(p) is a characteristic relaxation frequency, and n is a fractional exponent between 0 and 1. Both sigma(0) and f(p) are thermally activated with nearly the same activation energy in the II region, indicating that the dispersive conductivity originates from the migration of protons. However, activation energies decrease from 0.55 to 0.35 eV and n increases toward 1.0, as the concentration of TiO2 nanoparticles increases, thus, enhancing cooperative correlation among moving ions. The highest dc conductivity is obtained for the composite x = 0.05 concentration, with values above room temperature about three orders of magnitude higher than that of crystalline NH4H2PO4 (ADP), reaching values on the order of 0.1 (Omega cm)(-1) above 543 K.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)