12 resultados para Homogeneous function
em Reposit
Resumo:
Pós-graduação em Matemática - IBILCE
Resumo:
Pós-graduação em Zootecnia - FCAV
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Física - IGCE
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this paper we introduce the notion of G-pre-weighted homogeneous map germ, (G is one of Mather's groups A or K.) and show that any G-pre-weighted homogeneous map germ is G-finitely determined. We also give an explicit order, based on the Newton polyhedron of a pre-weighted homogeneous germ of function, such that the topological structure is preserved after perturbations by terms of higher order.
Resumo:
In this work, zinc oxide samples were obtained from hydroxycarbonate by thermal decomposition at 300°C. Zinc hydroxycarbonate samples were produced by homogeneous precipitation over different periods of time. The method used to obtain zinc oxide produces different morphologies as a function of the precursor precipitation time. Among the obtained particle shapes were porous spherical aggregates, spherulitic needle aggregates, and single acicular particles. This work investigated spherulitic needle-aggregate formation and the correlation among morphology, domain size, and microstrain. Transmission electron microscopy data revealed that the acicular particles that form the spherulitic needle aggregates consist of nanometer crystallites. Apparent crystallite size and microstrain in the directions perpendicular to (h00), (h0l), (hk0), and (00l) planes were invariable as a function of precursor precipitation time. From the results, it was possible to conclude that the precursor precipitation period directly influenced the morphology of the zinc oxide but did not influence average crystallite size and microstrain for ZnO samples. Therefore, using this route, it was possible to prepare zinc oxide with different morphologies without microstructural alterations. © 2001 International Centre for Diffraction Data.
Resumo:
The aim of this prospective study was to assess ovarian function using clinical and endocrine parameters in women of reproductive age who underwent total abdominal hysterectomy. Sixty-one women, aged ≤ 40 years, were allocated into two groups: group 1, consisting of 31 patients who had hysterectomy, and group 2, consisting of 30 normal women. Inclusion criteria were normal ovarian function at baseline, normal body weight, no hormonal diseases and basal follicle stimulating hormone (FSH) level of < 15 mIU/ml. FSH, luteinizing hormone (LH), estradiol and inhibin B levels as well as maturation value (MV) were measured by vaginal cytology on three occasions: baseline, and 6 and 12 months after hysterectomy. Analysis of variance, the Friedman test, Mann-Whitney test and t-test statistics were employed to compare the two groups. At baseline the groups were homogeneous. At months 6 and 12, hysterectomized women showed decreased median values of inhibin B, increased median values of estradiol (p < 0.05), unchanged median values of FSH and LH, and decreased median values of MV (p < 0.05). In the hysterectomy group, 12.9% (4/31) of the patients had FSH levels of > 40 mIU/ml, estradiol of < 20 pg/ml and inhibin B of < 5 ng/ml, compatible with ovarian failure. In the control group, all the parameters studied remained unchanged. These results suggest that total abdominal hysterectomy accelerates the decline in ovarian function in women of reproductive age.
Resumo:
In this work we solved the time dependent Ginzburg-Landau equations to simulate homogeneous superconducting samples with square geometry for several lateral sizes. As a result of such simulations we notice that in the Meissner state, when the vortices do not penetrate the superconductor, the response of small samples are not coincident with that expected for the bulk ones, i.e., 4. πM=. -. H. Thus, we focused our analyzes on the way which the M(. H) curves approximate from the characteristic curve of bulk superconductors. With such study, we built a diagram of the size of the sample as a function of the temperature which indicates a threshold line between macroscopic and bulk behaviors. © 2013 Elsevier B.V.
Resumo:
The energy landscape theory has been an invaluable theoretical framework in the understanding of biological processes such as protein folding, oligomerization, and functional transitions. According to the theory, the energy landscape of protein folding is funneled toward the native state, a conformational state that is consistent with the principle of minimal frustration. It has been accepted that real proteins are selected through natural evolution, satisfying the minimum frustration criterion. However, there is evidence that a low degree of frustration accelerates folding. We examined the interplay between topological and energetic protein frustration. We employed a Cα structure-based model for simulations with a controlled nonspecific energetic frustration added to the potential energy function. Thermodynamics and kinetics of a group of 19 proteins are completely characterized as a function of increasing level of energetic frustration. We observed two well-separated groups of proteins: one group where a little frustration enhances folding rates to an optimal value and another where any energetic frustration slows down folding. Protein energetic frustration regimes and their mechanisms are explained by the role of non-native contact interactions in different folding scenarios. These findings strongly correlate with the protein free-energy folding barrier and the absolute contact order parameters. These computational results are corroborated by principal component analysis and partial least square techniques. One simple theoretical model is proposed as a useful tool for experimentalists to predict the limits of improvements in real proteins. © 2013 Wiley Periodicals, Inc.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)