39 resultados para Generalized Weyl Fractional q-Integral Operator
em Reposit
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
By means of a triple master action we deduce here a linearized version of the new massive gravity (NMG) in arbitrary dimensions. The theory contains a 4th-order and a 2nd-order term in derivatives. The 4th-order term is invariant under a generalized Weyl symmetry. The action is formulated in terms of a traceless ημνΩμνρ=0 mixed symmetry tensor Ωμνρ=-Ωμρν and corresponds to the massive Fierz-Pauli action with the replacement e μν=∂ρΩμνρ. The linearized 3D and 4D NMG theories are recovered via the invertible maps Ωμνρ=Ïμνρβhβμ and Ωμνρ=ÏμνργδT [γδ]μ respectively. The properties h μν=hνμ and T[[γδ]μ]= 0 follow from the traceless restriction. The equations of motion of the linearized NMG theory can be written as zero curvature conditions ∂νTρμ-∂ρT νμ=0 in arbitrary dimensions. © 2013 American Physical Society.
Resumo:
Pós-graduação em Biofísica Molecular - IBILCE
Resumo:
There are several mechanical models to describe the DNA phenomenology. In this work the DNA denaturation is stu- died under thermodynamical and dynamical point of view using the well known Peyrard-Bishop model. The thermody-namics analysis using the transfer integral operator method is briefly reviewed. In particular, the lattice size is discussed and a conjecture about the minimum energy to denaturation is proposed. In terms of the dynamical aspects of the model, the equations of motion for the system are integrated and the results determine the energy density where the denatura- tion occurs. The behavior of the lattice near the phase transition is analyzed. The relation between the thermodynamical and dynamical results is discussed.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The fractional generalized Langevin equation (FGLE) is proposed to discuss the anomalous diffusive behavior of a harmonic oscillator driven by a two-parameter Mittag-Leffler noise. The solution of this FGLE is discussed by means of the Laplace transform methodology and the kernels are presented in terms of the three-parameter Mittag-Leffler functions. Recent results associated with a generalized Langevin equation are recovered.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The generalized temperature integral I(m, x) appears in non-isothermal kinetic analysis when the frequency factor depends on the temperature. A procedure based on Gaussian quadrature to obtain analytical approximations for the integral I(m, x) was proposed. The results showed good agreement between the obtained approximation values and those obtained by numerical integration. Unless other approximations found in literature, the methodology presented in this paper can be easily generalized in order to obtain approximations with the maximum of accurate.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We study the role of the thachyonic excitation which emerges from the quantum electrodynamics in two dimensions with Podolsky term. The quantization is performed by using path integral framework and the operator approach.
Resumo:
We present an operator formulation of the q-deformed dual string model amplitude using an infinite set of q-harmonic oscillators. The formalism attains the crossing symmetry and factorization and allows to express the general n-point function as a factorized product of vertices and propagators.
Resumo:
Starting from the Schwinger unitary operator bases formalism constructed out of a finite dimensional state space, the well-known q-deformed commutation relation is shown to emerge in a natural way, when the deformation parameter is a root of unity.
Resumo:
This paper is concerned with a generalization of the Riemann- Stieltjes integral on time scales for deal with some aspects of discontinuous dynamic equations in which Riemann-Stieltjes integral does not works. © 2011 Academic Publications.
Resumo:
A study of the generalized holomorphic functions, HG(Omega), having in mind its strict elements, i.e. those which are in HG(Omega) - H(Omega), as well as the possibility of the existence of hybrid elements, i.e. elements which have, in a part of a domain Omega subset of C-n, the strict behaviour and, in another part of the same domain, the classical behaviour, is carried out in this work. The study of hybrid elements is important in the approach of a concept of generalized domain of holomorphy.
Resumo:
We present two extension theorems for holomorphic generalized functions. The first one is a version of the classic Hartogs extension theorem. In this, we start from a holomorphic generalized function on an open neighbourhood of the bounded open boundary, extending it, holomorphically, to a full open. In the second theorem a generalized version of a classic result is obtained, done independently, in 1943, by Bochner and Severi. For this theorem, we start from a function that is holomorphic generalized and has a holomorphic representative on the bounded domain boundary, we extend it holomorphically the function, for the whole domain.