11 resultados para unilateral effect
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
This work deals with the initial applications and formulation of an aniscitropic plastic-damage constitutive model proposed for non-linear analysis of reinforced concrete structures submitted to a loading with change of the sign. The original constitutive model is based on the fundamental hypothesis of energy equivalence between real and continuous medium following the concepts of the Continuum Damage Mechanics. The concrete is assumed as an initial elastic isotropic medium presenting anisotropy, permanent strains and bimodularity (distinct elastic responses whether traction or compression stress states prevail) induced by damage evolution. In order to take into account the bimodularity, two damage tensors governing the rigidity in tension or compression regimes are introduced. Then, some conditions are introduced in the original version of the model in order to simulate the damage unilateral effect. The three-dimensional version of the proposed model is analyzed in order to validate its formulation when compared to micromechanical theory. The one-dimensional version of the model is applied in the analyses of a reinforced concrete beam submitted to a loading with change of the sign. Despite the parametric identification problems, the initial applications show the good performance of the model.
Resumo:
Purpose: The aim of this study was to evaluate the effect of different levels of unilateral angular misfit on preload maintenance of retention screws of single implant-supported prostheses submitted to mechanical cycling. Materials and methods: Premachined UCLA abutments were cast with cobalt-chromium alloy to obtain 48 crowns divided into four groups (n=12). The crowns presented no misfit in Group A (control group) and unilateral misfits of 50μm, 100μm and 200μm in the groups B, C and D, respectively. The crowns were attached to external hexagon implants with a titanium retention screw with torque of 30N/cm. Oblique loading of 130N at 2Hz was applied on each replica, totalizing 5×104 and 1×106cycles. Detorque values were measured initially and after each cycling period. Data were evaluated by analysis of variance and Tukey's HSD test (p<0.05). Results: All groups presented reduced initial detorque values (p< 0.05) in comparison to the insertion torque (30. ± 0.5. N/cm) and Group A (25.18. N/cm) exhibited the lowest reduction. After mechanical cycling, all groups presented detorque values from 19.5. N/cm to 22.38. N/cm and the mechanical cycling did not statistically influence the detorque values regardless the misfit level of the replicas. Conclusion: The unilateral misfit influenced the preload maintenance only before mechanical cycling. The mechanical cycling did not influence the torque reduction. © 2010 Japan Prosthodontic Society.
Resumo:
The aim of this study was to evaluate the effect of unilateral angular misfit of 100 Km on stress distribution of implant-supported single crowns with ceramic veneering and gold framework by three-dimensional finite element analysis. Two three-dimensional models representing a maxillary section of premolar region were constructed: group 1 (control)-crown completely adapted to the implant and group 2-crown with unilateral angular misfit of 100 Km. A vertical force of 100 N was applied on 2 centric points of the crown. The von Mises stress was used as an analysis criterion. The stress values and distribution in the main maps (204.4 MPa for group 1 and 205.0 MPa for group 2) and in the other structures (aesthetic veneering, framework, retention screw, implant, and bone tissue) were similar for both groups. The highest stress values were observed between the first and second threads of the retention screw. Considering the bone tissue, the highest stress values were exhibited in the peri-implant cortical bone. The unilateral angular misfit of 100 Km did not influence the stress distribution on the implant-supported prosthesis under static loading.
Resumo:
The misfit between prostheses and implants is a clinical reality, but the level that can be accepted without causing mechanical or biologic problem is not well defined. This study investigates the effect of different levels of unilateral angular misfit prostheses in the prosthesis/implant/retaining screw system and in the surrounding bone using finite element analysis. Four models of a two-dimensional finite element were constructed: group I (control), prosthesis that fit the implant; groups 2 to 4, prostheses with unilateral angular misfit of 50, 100, and 200 mu m, respectively. A load of 133 N was applied with a 30-degree angulation and off-axis at 2 mm from the long axis of the implant at the opposite direction of misfit on the models. Taking into account the increase of the angular misfit, the stress maps showed a gradual increase of prosthesis stress and uniform stress in the implant and trabecular bone. Concerning the displacement, an inclination of the system due to loading and misfit was observed. The decrease of the unilateral contact between prosthesis and implant leads to the displacement of the entire system, and distribution and magnitude alterations of the stress also occurred.
Resumo:
Purpose: The aim of this study was to evaluate the effect of mechanical cycling and different misfit levels on Vicker's microhardness of retention screws for single implant-supported prostheses.Materials and Methods: Premachined UCLA abutments were cast with cobalt-chromium alloy to obtain 48 crowns divided into four groups (n = 12). The crowns presented no misfit in group A (control group) and unilateral misfits of 50 mu m, 100 mu m, and 200 mu m in groups B, C, and D, respectively. The crowns were screwed to external hexagon implants with titanium retention screws (torque of 30 N/cm), and the sets were submitted to three different periods of mechanical cycling: 2 x 10(4), 5 x 10(4), and 1 x 10(6) cycles. Screw microhardness values were measured before and after each cycling period. Data were evaluated by two-way ANOVA and Tukey's test (p < 0.05).Results: Mechanical cycling statistically reduced microhardness values of retention screws regardless of cycling periods and groups. In groups A, B, and C, initial microhardness values were statistically different from final microhardness values (p < 0.05). There was no statistically significant difference for initial screw microhardness values (p > 0.05) among the groups; however, when the groups were compared after mechanical cycling, a statistically significant difference was observed between groups B and D (p < 0.05).Conclusions: Mechanical cycling reduced the Vicker's microhardness values of the retention screws of all groups. The crowns with the highest misfit level presented the highest Vicker's microhardness values.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The aim of this study was to evaluate the effect of unilateral misfit at different levels on a crown-implant-retention screw system of implant-supported crowns. Hexagon castable UCLA abutments were cast in Co-Cr alloy to fabricate 48 metallic crowns divided into four groups (n = 12). Group A: crowns did not present misfit; Groups B, C and D: crowns were fabricated with unilateral misfit of 50, 100, and 200 mu m, respectively. The crowns were attached by titanium retention screw with 30 N/cm to external hexagonal osseointegrated implants embedded in acrylic resin. After 2 min, the retention screw of each replica was submitted to detorque evaluation by an analogic torque gauge. Three retention screws were used to perform detorque evaluation at each replica and the procedure was repeated twice with each screw. Each group was submitted to 72 detorque measurements. Data were evaluated by ANOVA and Tukey test (P < 0.05). All groups exhibited significant decrease (P < 0.05) in preload and the lowest decrease occurred in Group A. Groups B, C, and D were statistically significant different from Group A (P < 0.05), but there was no statistically significant difference between Groups B and D (P > 0.05). Crowns with unilateral misfit presented higher preload decrease than crowns completely fitted to osseointegrated implants.
Resumo:
Background: Tumescent anaesthesia (TA) is a widely used technique in oncologic surgeries necessitating large resection margins. This technique produces transoperative and postoperative analgesia, reduces surgical bleeding, and facilitates tissue divulsion. This prospective, randomised, blind study evaluated the use of TA in bitches submitted to mastectomy and compared the effect of TA with an intravenous fentanyl bolus. A 2.5-mcg/kg intravenous fentanyl bolus (n = 10) was compared with TA using 0.275% lidocaine (n = 10) in bitches submitted to unilateral mastectomy. Sedation was performed by intramuscular (IM) injection of 0.05 mg/kg of acepromazine combined with 2 mg/kg of meperidine. Anaesthesia was induced with 5 mg/kg of intravenous propofol and maintained with isoflurane/O2. Heart and respiratory rates; systolic, mean, and diastolic arterial blood pressures; central venous pressure; SpO2; ETCO2; inspired and expired isoflurane concentrations; and temperature were measured transoperatively. Visual analogue scales for sedation and pain and the Glasgow composite and Melbourne pain scales were used for postoperative assessment. The surgeon investigated the quality of the surgical approach, considering bleeding and resection ability, and the incidence of postoperative wound complications.Results: The heart rate was lower and the end-tidal isoflurane concentration was higher in dogs treated with fentanyl than in dogs treated with TA. A fentanyl bolus was administered to 8 of 10 dogs treated with fentanyl and to none treated with TA. Intraoperative bleeding and the mammary gland excision time were lower in dogs treated with TA. The maximal mean and individual plasma lidocaine concentrations were 1426 ± 502 ng/ml and 2443 ng/ml at 90 minutes after infiltration, respectively. The Glasgow Composite Pain Scale scores were higher in dogs treated with fentanyl than in dogs treated with TA until 2 hours after extubation.Conclusions: Compared with intravenous fentanyl, TA in bitches: may be easily performed in non-inflamed, ulcerated, adhered mammary tumours; has an isoflurane-sparing effect; improves transoperative and immediate postoperative analgesia; is apparently safe for use in clinical conditions as evidenced by the fact that it did not produce any adverse signs or lidocaine plasma concentrations compatible with toxicity; does not modify the recovery time; and facilitates the surgical procedure without interfering with wound healing. © 2013 Credie et al.; licensee BioMed Central Ltd.
Resumo:
Pós-graduação em Odontologia - FOAR
Resumo:
Background: We aimed to analyze the effect of a physical therapy protocol on unilateral vestibular hypofunction and overall balance in elderly with vertigo. Methods: The study included nine subjects, four male subjects (68.5 ± 11.09 years old) and five females (72.4 ± 7.09 years old). It was used the performance-oriented Mobility Assessment (POMA), to evaluate the balance and the Unterberger – Fukuda test for analysis of unilateral vestibular dysfunction through rotations and displacements of the body. We developed and applied a structured physical therapy protocol, consisting of group exercises. Results: It was observed that after the protocol, all participants improved balance (33.9 ± 5.1 vs. 47.3 ± 7.6, p < 0.0001) and displacement (111.1 ± 38.0 vs. 53.3 ± 34.6, p = 0.0001). However, it was not found significant differences for rotation. Conclusion: The proposed protocol has contributed to an improvement in balance and vestibular dysfunction of the aged.