144 resultados para ultrafiltration membrane
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
We report preparation and the singular filtration properties of an ultrafiltration membrane made with MSU-type mesoporous silica that exhibits cylindrical pores aligned mostly normal to the support. This membrane supported on tubular commercial macroporous alumina supports was prepared by the interfacial growth mechanism between stable silica-surfactant hybrid micelles made of the association of silica oligomers with polyethyleneoxide-based (PEO) surfactants and sodium fluoride, a well-known silica condensation catalyst. It appears that the combined effect of the silica nature of the membrane, whose surface charge can be easily adjusted by changing the pH and the non-connected cylindrical shape of the pores provides a new behavior in the retention properties, as proved by the filtration of polyoxyethylene polymers (PEO) with different molecular weights. Depending on the filtration conditions, a rejection rate of 80 % and a steep cut-off at 2,000 Da can be obtained or, on the reverse, polymers three times bigger than the pore diameter can diffuse through the membrane. This new filtration mechanism, which opens up new modes of separation modes, is explained in the light of both topology of the porous network and pH-dependent interactions between PEO polymers and silica porous media. © 2005 Elsevier B.V. All rights reserved.
Resumo:
We report the singular filtration properties of an ultrafiltration membrane made with mesoporous silica that exhibits cylindrical pores aligned mostly normal to the support. This membrane supported on tubular commercial macroporous alumina supports was prepared by the interfacial growth mechanism between stable silica-surfactant hybrid micelles made of the association of silica oligomers with polyethyleneoxide-based (PEO) surfactants and sodium fluoride, a well-known silica condensation catalyst [Boissière et al., An ultrafiltration membrane made with mesoporous MSU-X silica, Chem. Mater. 15 (2003) 460-463]. It appears that the combined effect of the silica nature of the membrane, whose surface charge can be easily adjusted by changing the pH and the non-connected cylindrical shape of the pores provides a new behavior in the retention properties, as proved by the filtration of polyoxyethylene polymers (PEO) with different molecular weights. Depending on the filtration conditions, a rejection rate of 80% and a steep cut-off at 2000 Da can be obtained or, on the reverse, polymers three times bigger than the pore diameter can diffuse through the membrane. This new filtration mechanism, which opens up new modes of separation modes, is explained in the light of both topology of the porous network and pH-dependent interactions between PEO polymers and silica porous media. © 2004 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
SnO2 supported membranes, presenting 3.0 nm average pore size, have been produced by sol casting on alumina tubular substrate using aqueous colloidal suspensions prepared by sol-gel route. The selectivity and flux throughout SnO2 membrane were analyzed by permeation experiments, using a laboratory tangential filtration pilot equipped with a monotubular membrane. To evaluate the effect of the surface charge at the membrane-solution interface, aqueous salt solutions (NaCl, Na2SO4, CaCl, and CaSO4) of different ionic strength have been filtered and the results correlated with the values of zeta potential measured at several pH. The results show that the retention coefficient is dependent on the electrolyte present in aqueous solution decreasing as: (dication, monoanion) > (monocation, monoanion) approximate to (monocation, dianion) > (dication, dianion). The surface charge and the cation adsorption capacity play a determinant role in these selectivity sequences. (C) 2001 Elsevier B.V. B.V. All rights reserved.
Resumo:
This paper deals with the development and optimization of an analytical procedure using ultrafiltration and a flow-injection system, and its application in in-situ experiments to characterize the lability and availability of metal species in humic-rich hydrocolloids. The on-line system consists of a tangential flow ultrafiltration device equipped with a 3-kDa filtration membrane. The concentration of free ions in the filtrate was determined by atomic-absorption spectrometry, assuming that metals not complexed by aquatic humic substances (AHS) were separated from the complexed species (M-AHS) retained by the membrane. For optimization, exchange experiments using Cu(II) solutions and AHS solutions doped with the metal ions Ni(II), Mn(II), Fe(III), Cd (II), and Zn(II) were carried out to characterize the stability of the metal-AHS complexes. The new procedure was then applied in-situ at a tributary of the Ribeira do Iguape river (Iguape, São Paulo State, Brazil) and evaluated using the ions Fe(III) and Mn(II), which are considered to be essential constituents of aquatic systems. From the exchange between metal-natural organic matter (M-NOM) and the Cu(II) ions it was concluded that Cu(II) concentrations > 485 mu g L(-1) were necessary to obtain maximum exchange of the complexes Mn-NOM and Fe-NOM, corresponding to 100% Mn and 8% Fe. Moreover, the new analytical procedure is simple and opens up new perspectives for understanding the complexation, transport, stability, and lability of metal species in humic-rich aquatic environments.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Supported ceramic membranes have been produced by the sol-casting procedure from aqueous colloidal suspensions prepared by the sol-gel route. Coatings on a tubular alumina support have been successfully performed leading to crack free layers. Samples have been sintered at 400, 500 and 600 degreesC, and the effect of heating treatment on the nanostructure and on the ultrafiltration properties are analyzed. The characterization has been done by high resolution scanning electron microscopy, nitrogen adsorption-desorption isotherms, water permeation and cut-off determination using polyethylene glycol standard solutions. The micrographs have revealed that grains and pore size increase with the temperature, whereas their shape remains invariant. This results is in agreements with N-2 adsorption-desorption analyses, which have revealed that the mean pore size diameter increases from 4 to 10 nm as the sintering temperature increases from 400 to 600 degreesC, while the total porosity remains constant. Furthermore, the tortuosity, calculated from water permeability, is essentially invariant with the sintering temperatures. The membranes cut-off, determined with a retention rate equal to 95%, are 3500, 6500 and 9000 g . mol(-1) for 400, 500 and 600 degreesC, respectively, showing that the permeation properties of SnO2 ultrafiltration membranes can easily be controlled by sintering condition.
Resumo:
Background: Cerebrospinal fluid (CSF) is produced in the cerebral ventricles through ultrafiltration of plasma and active transport mechanisms. Evaluation of proteins in CSF may provide important information about the production of immunoglobulins within the central nervous system as well as possible disturbances in the blood-brain barrier. Objective: the objective of this study was to measure the concentration and fractions of protein in CSF samples using a membrane microconcentrator technique followed by electrophoresis, and to compare the protein fractions obtained with those in serum. Methods: CSF samples from 3 healthy dogs and 3 dogs with canine distemper virus infection were concentrated using a membrane microconcentrator having a 0.5 to 30,000 d nominal molecular weight limit (Ultrafree, Millipore, Billerica, MA, USA). Protein concentration was determined before and after concentration. Agarose gel electrophoresis was done on concentrated CSF samples, serum, and serial dilutions of one of the CSF samples. Results: Electrophoretic bands were clearly identified in densitometer tracings in CSF samples with protein concentrations as low as 1.3 g/dL. The higher CSF protein concentration in dogs with distemper was mainly the result of increased albumin concentration. Conclusion: the microconcentrating method used in this study enables characterization of the main protein fractions in CSF by routine electrophoresis and may be useful for interpreting the underlying cause of changes in CSF protein concentrations
Resumo:
This work describes the chemical modification by Tiron(R) molecules of the surface of SnO2 nanoparticles used to prepare nanoporous membranes. Samples prepared with Tiron(R) content between 1 and 20 wt% and fired at 400 C were characterised by X-Ray Powder Diffraction (XRPD), Extended X-ray Absorption Fine Structure (EXAFS), N-2 adsorption isotherms analysis and permeation experiments. XRPD and EXAFS results show a continuous reduction of crystallite size by increasing the Tiron(R) contents until 7.5 wt%. The control exercised by Tiron(R) modifying agent in crystallite growth allows the fine tuning of the average pore size that can be screened from 0.4 to 4 nm as the amount of grafted molecules decreases from 10 to 0 wt%. In consequence, the membrane cut-off can be screened from 1500 to 3500 g.mol(-1).
Resumo:
Diffusive gradients in thin films (DGT) and tangential-flow ultrafiltration (TF-UF) were combined for fractionation of Al and Cu in river water containing high content of dissolved organic carbon. A procedure based on ultrafiltration data is proposed to determine diffusion coefficients of the analytes in water samples and model solutions containing both free metal (M) and complex (metal - humic substance). Aiming to evaluate the accuracy of the proposed approach, the DGT results were compared with those from a protocol for determination of labile Al and Cu based on solid phase extraction (SPE). Good agreement between data from DGT and SPE were attained for model solutions. For analysis of real organic-rich water samples, differences between DGT and SPE measurements were consistent with the time-scales of the techniques. The concentration of labile Al determined by DGT were lower than the total dissolved concentrations (determined by inductively coupled plasma mass spectrometry) and exceeded the ultrafiltered concentration, indicating that inorganic Al species (species small enough to pass through 1 kDa membrane) were minor species as compared with Al organic complexes. For both Al and Cu, there were species not measured by DGT as they are not sufficiently labile. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
A new procedure was developed in this study, based on a system equipped with a cellulose membrane and a tetraethylenepentamine hexaacetate chelator (MD-TEPHA) for in situ characterization of the lability of metal species in aquatic systems. To this end, the DM-TEPHA system was prepared by adding TEPHA chelator to cellulose bags pre-purified with 1.0 mol L-1 of HCl and NaOH solutions. After the MD-TEPHA system was sealed, it was examined in the laboratory to evaluate the influence of complexation time (0-24 h), pH (3.0, 4.0, 5.0, 6.0 and 7.0), metal ions (Cu, Cd, Fe, Mn and Ni) and concentration of organic matter (15, 30 and 60 mg L-1) on the relative lability of metal species by TEPHA chelator. The results showed that Fe and Cu metals were complexed more slowly by TEPHA chelator in the MD-TEPHA system than were Cd, Ni and Mn in all pH used. It was also found that the pH strongly influences the process of metal complexation by the MD-TEPHA system. At all the pH levels, Cd, Mn and Ni showed greater complexation with TEPHA chelator (recovery of about 95-75%) than did Cu and Fe metals. Time also affects the lability of metal species complexed by aquatic humic substances (AHS); while Cd, Ni and Mn showed a faster kinetics, reaching equilibrium after about 100 min, and Cu and Fe approached equilibrium after 400 min. Increasing the AHS concentration decreases the lability of metal species by shifting the equilibrium to AHS-metal complexes. Our results indicate that the system under study offers an interesting alternative that can be applied to in situ experiments for differentiation of labile and inert metal species in aquatic systems. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The effects of the Linear Alkylbenzene Sulphonate (LAS) were evaluated on the mussel Perna perna (Linnaeus, 1758), using a cellular level biomarker. The Neutral Red Retention Time (NRRT) assay was used to estimate effects at cellular levels. Significant effects were observed for the NRRT assay, even in low concentrations. The effects at cellular level were progressive, suggesting that the organisms are not capable to recover of such increasing effects. Additionally, the results show that the levels of LAS observed for Brazilian coastal waters may chronically affect the biota.