95 resultados para tube furnace
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This article reports on the growth of SnO nanobelts and dendrites by a carbothermal reduction process. The materials were synthesized in a sealed tube furnace at 1210 degrees C and at 1260 degrees C for 2 h. in a dynamic nitrogen atmosphere of 40 seem. After synthesis, gray-black materials were collected downstream in the tube and the samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy-dispersive X-ray spectroscopy (EDX). The results showed that the gray-black materials were composed of nanobelts, which grew in the [110] direction of the orthorhombic structure of SnO. Some of the belts also presented dendritic growth. The dendrites grew in the (110) planes of the SnO structure, and no defects were observed at the junction between the nanobelts and the dendrites. A self-catalytic vapor-liquid-solid (VLS) process was proposed to explain the growth of the SnO nanobelts and dendrites.
Resumo:
Lead zirconate titanate (PZT) solutions were prepared using a polymeric precursor method, Zr n-propoxide and Ti i-propoxide were used as starting materials with ethylene glycol and water as solvents. The PZT solution was spin-coated on Pt/Ti/SiO2/Si substrates, baked on a hot plate, and finally heat-treated in a tube furnace between 400 and 800°C. The surface morphology and grain size of the films were characterized by atomic force microscopy (AFM), using a tapping mode with amplitude modulation. The films, thermal annealed at temperatures higher than 500°C, exhibited a dense microstructure, without noticeable cracks or voids. Electrical properties were investigated as a function of composition and annealing temperature.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
With advances in health care, has been na increase of demand for material that could replace the functions of the human body parts, thus evolved biomedic prosthesis which today are responsible for the constant improvement of the quality of life. The Titanium alloys are widely used as implants due to its properties, like high mechanical resistance, biocompatibility and corrosion resistance, and the addition alloying elements like Zirconium, may improve some of those properties. Such properties are related to the microstructure and consequently to the type of processing performed. The purpose of this dissertation was to characterize the experimental alloy Ti15Zr after route of processsing and heat treatment in order to extend the knowledge about this alloy. The latter has been abtained by fusion of pure metals in a arc melting furnace with an inert argon atmosphere. The material has been homogenized in a tube furnace at 950ºC for 24h and cold worked by swaging, after that, bars with 10 mm of diameter were obtained by the process of rotary forging. The samples were solubilized at 900º C for 2 hours and quenched in water. After that, 4 samples were submitted to the aging, at 400º C, 450º C, 500º C and 550º C. The microstructure and phase analysis was done by optical microscopy and X-rays diffraction (XRD), the mechanical characterization was carried out by microhardness test and finally, evaluation of corrosion resistance of the alloy by electrochemical tests. The XRD and the optical microscopy made it possible to analyze that the heat treatment influenced the phase shifting from α to α', and probably affected the alloy hardness, at the first aged sample at 500º Chas been a sudden increase in the value of hardness, probably by appearance of omega phase, unwanted phase to the medical application duo to great fragility, and finally ... (Complete abstract click electronic access below)
Resumo:
A tungsten carbide coating on the integrated platform of a transversely heated graphite atomizer was used as a modifier for the direct determination of Se in soil extracts by graphite furnace atomic absorption spectrometry. Diethylenetriaminepentaacetic acid (0.0050 mol L-1) plus ammonium hydrogencarbonate (1.0 mol L-1) extracted predominantly available inorganic selenate from soil. The formation of a large amount of carbonaceous residue inside the atomizer was avoided with a first pyrolysis step at 600 degreesC assisted by air during 30 s. For 20 muL of soil extracts delivered to the atomizer and calibration by matrix matching, an analytical curve (10.0-100 mug of L-1) with good linear correlation (r = 0.999) between integrated absorbance and analyte concentration was established. The characteristic mass was similar to63 pg of Se, and the lifetime of the tube was similar to750 firings. The limit of detection was 1.6 mug L-1, and the relative standard deviations (n = 12) were typically <4% for a soil extract containing 50 mug of L-1. The accuracy of the determination of Se was checked for soil samples by means of addition/recovery tests. Recovery data of Se added to four enriched soil samples varied from 80 to 90% and indicated an accurate method.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A tungsten carbide coating on the integrated platform of a transversely heated graphite atomizer (THGA((R))) used together with Pd(NO3)(2) + Mg(NO3)(2) as modifier is proposed for the direct determination of lead in vinegar by graphite furnace atomic absorption spectrometry. The optimized heating program (temperature, ramp time, hold time) of atomizer involved drying stage (110 degrees C, 5 s, 30 s; 130 degrees C, 5 s, 30 s), pyrolysis stage (1000 degrees C, 15 s, 30 s), atomization stage (1800 degrees C, 0 s, 5 s) and clean-out stage (2450 degrees C, I s, 3 s). For 10 mu L of vinegar delivered into the atomizer and calibration using working standard solutions (2.5-20.0 mu g L-1 Pb) in 0.2% (v/v) HNO3, analytical curve with good linear correlation (r = 0.9992) was established. The characteristic mass was 40 pg Pb and the lifetime of the tube was around 730 firings. The limit of detection (LOD) was 0.4 mu g L-1 and the relative standard deviations (n = 12) were typically <8% for a sample containing 25 pg L-1 Pb. Accuracy of the proposed method was checked after direct analysis of 23 vinegar samples. A paired t-test showed that results were in agreement at 95% confidence level with those obtained for acid-digested vinegar samples. The Pb levels varied from 2.8 to 32.4 pg L-1. Accuracy was also checked by means of addition/recovery tests and recovered values varied from 90% to 110%. Additionally, two certified reference materials were analyzed and results were in agreement with certified values at a 95% confidence level. (C) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The influence of sample preparation strategy of vegetables on the electrothermal behaviour of Se without and with chemical modifiers such as Pd(NO3)(2), Pd(NO3)(2) + Mg(NO3)(2), Pd(NO3)(2) + Cd(NO3)(2), pre-reduced Pd, Mg(NO3)(2), and Ni(NO3)(2) was investigated. Acid digestates and slurries of vegetables (0.1% m/v in 1% m/v HNO3 + 0.005% v/v of Triton X-100) were used to prepare reference solutions or slurries. For 10 mul of each modifier tested, pyrolysis and atomization temperatures were evaluated using pyrolysis and atomization curves, respectively. Best conditions, such as thermal stability, signal profile, repeatability and sensitivity were attained using Pd(NO3)(2) as chemical modifier. The following heating program (temperature, ramp/hold time) of the graphite tube of the Varian SpectrAA-800Z atomic absorption spectrometer was used: dry step (85 degreesC, 5/0 s; 95 degreesC, 40/0 s; 120 degreesC, 10/.5 s); pyrolysis step (1400 degreesC, 10/3s); atomization step (2200 degreesC, 1/2 s); clean step (2600 degreesC, 2/0 s). This pyrolysis temperature is 800 degreesC higher than when measuring without any modifier. For 20 muL sample volume and 10 mug Pd(NO3)(2), analytical curves in the 3.0-30 mug Se 1(-1) range were obtained. The method was applied for Se determination in acid digestates and slurries of 10 vegetable samples and one standard reference material (rice flower) and results were in agreement at 95% confidence level. Recoveries varied from 89 to 95% for spiked samples. The lifetime of the graphite tube was ca. 250 firings and the relative standard deviations (n = 12) for a typical acid digestate and slurry containing 20 mug Se 1(-1) were 3.8% and 8.3%, respectively. The limits of detection were 2.0 mug Se 1(-1) and 0.6 mug Se 1(-1) Se for digestates and slurries, respectively. (C) 2002 Elsevier B.V. Ltd. All rights reserved.
Resumo:
A method has been developed for the direct determination of Se in nutritionally relevant foods by graphite furnace atomic absorption spectrometry. Tungsten/rhodium carbide coating on the integrated platform of a transversely heated graphite atomizer or W coating with co-injection of Pd(NO3)(2) were used as a permanent modifiers. Samples and reference solutions were spiked with 500 mu g L-1 As and absorbance variations due to changes in experimental conditions were minimized. For 20 mu L aqueous analytical solutions delivered into the graphite tube, analytical curves in the 5.0-40 mu g L-1 with good linear correlation were established. Pyrolysis and atomization temperatures were evaluated using pyrolysis and atomization curves, respectively. The optimized heating program (temperature, ramp time, hold time) of the graphite tube of the Perkin-Elmer SIMAA 6000 atomic absorption spectrometer was: dry steps (110 degrees C, 5 s, 10 s; 130 degrees C, 15 s, 15 s); air-assisted pyrolysis step (600 degrees C, 20 s, 40 s; 20 degrees C, 1 s, 40 s); pyrolysis step (1300 degrees C, 10 s, 20 s); atomization step (2100 degrees C, 0 s, 4 s); clean step (2550 degrees C, 1 s, 5 s). The method was applied for Se determination in coconut water, coconut milk, soybean milk, cow milk, tomato juice, mango juice, grape juice and drinking water samples and four standard reference materials and results were in agreement at 95% confidence level. The lifetime of the tube was 500 firings and the relative standard deviations of measurements of typical samples containing 25 mu gL(-1) Se were 3.0% and 6.0% (n = 12) with and without internal standardization, respectively. The limits of detection were in the 0.35 mu g L-1-0.7 mu g Se L-1 range. The accuracy of the proposed method was evaluated by an addition-recovery experiment and all recovered values were in the 98-109% range. (c) 2004 Elsevier Ltd. All rights reserved.
Resumo:
A method was developed using the multi-element graphite furnace atomic absorption spectrometry technique for the direct and simultaneous determination of As, Cu, and Pb in Brazilian sugar cane spirit (cachaqa) samples. Also employed was the end-capped transversely heated graphite atomizer (THGA) with platforms pre-treated with W permanent modifier and co-injection of Pd/Mg(NO3)(2). Pyrolysis and atomization temperature curves were established in a cachaqa medium (1+1; v/v) containing 0.2% (v/v) HNO3 and spiked with 20 mu g L-1 As and Pb and 200 mu g L-1 Cu. The effect of the concentration of major elements usually present in cachaqa matrices (Ca, Mg, Na, and K) and ethanol on the absorbance of As, Cu, and Pb was investigated. Analytical working solutions of As, Cu, and Pb were prepared in 10% (v/v) ethanol plus 5.0 mg L-1 Ca, Mg, Na, and K. Acidified to 0.2% (v/v) HNO3, these solutions were suitable to build calibration curves by matrix matching. The proposed method was applied to the simultaneous determination of As, Cu, and Pb in commercial sugar cane spirits. The characteristic mass for the simultaneous determination was 16 pg As, 119 pg Cu, and 28 pg Pb. The pretreated tube lifetime was about 450 firings. The limit of detection (LOD) was 0.6 mu g L-1 As, 9.2 mu g L-1 Cu, and 0.3 pig L-1 Pb. The found concentrations varied from 0.81 to 4.28 mu g L-1 As, 0.28 to 3.82 mg L-1 Cu and 0.82 to 518 mu g L-1 Pb. The recoveries of the spiked samples varied from 94-112% (As), 97-111% (Cu), and 95-101% (Pb). The relative standard deviation (n=12) was 6.9%, 7.4%, and 7.7% for As, Cu, and Pb, respectively, present in a sample at 0.87 mu g L-1, 0.81 mg L-1, and 38.9 mu g L-1 concentrations.