27 resultados para triphenylphosphine

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The compounds [PdCl(2)L(2)] and [PdL(4)] (L=PPh(3), AsPh(3), SbPh(3)) were studied by thermogravimetric and differential thermal analyses in air. The residues of thermal decomposition consist of metallic palladium, except in the case of the complexes containing SbPh(3), when the residues are palladium and antimony mixtures in appropriate proportions with respect to the stoichiometry of the related complexes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The compound (1,10-phenanthroline)(thiocyanate-N)(triphenylphosphine)copper(I), was synthesized and studied by IR spectroscopy and X-ray diffraction techniques. It is monomeric with the thiocyanate acting as a N-donor ligand. The copper atom shows a distorted tetrahedral coordination geometry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The compound (3,5-dinitrobenzoate)bis(triphenylphosphine)copper(I) was synthesized and studied by IR spectroscopy and X-ray diffraction techniques. It is monomeric with the carboxylato acting as a monodentate ligand. The copper atom shows a trigonal planar coordination geometry. © 1993.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The triphenylphosphine (PPh3) displaces the acetonitrile from [PdCl2(CH3CN)2], and subsequent addition of the potassium cyanate causes substitution of the chloro ligand by NCO- to yield trans-[Pd(NCO)2(PPh3)2]. The complex was characterized by elemental analysis, IR spectroscopy and single-crystal X-ray diffraction. The title compound was crystallized in a triclinic system, space group P1 with a = 9.213(3)Å, b = 9.781(7)Å, c = 10.483(5)Å, α = 111.39(5)°, β = 93.49(3)°, γ = 103.81(4)°, V = 845.0(1)Å3, Z = 1. The coordination geometry around Pd(II) in this complex is nearly square-planar, with the ligands in a trans relationship. 2008 © The Japan Society for Analytical Chemistry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The compounds [NiX 2(PPh 3) 2] (where X is Cl -, Br -, I -, NO - 3, NCS -; and PPh 3 is triphenylphosphine) were prepared and characterized by infrared and atomic absorption spectroscopies and by carbon and hydrogen analyses. Simultaneous thermogravimetric (TG) and derivative thermogravimetric (DTG) curves of these complexes were recorded in air. The decrease in mass observed indicates conversion of the complexes to oxides. The thermal decomposition of the halogen and nitrate complexes occurred in a number of steps; the thiocyanate complex decomposed in a single step. © 1994.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Studies by thermogravimetric analysis (TG) and differential thermal analysis (DTA) of the complexes [PtCl2L2] (L is PPh3, AsPh3, SbPh3), [PtLn] (n = 3, L is SbPh3; n = 4, L is PPh3, AsPh3); [(PtL3)2N2]; [(PtL3)2C2] and [Pt(CO)2L2] (L is SbPh3) are described. Analysis of the TG and DTA curves showed that Pt(II) complexes of the type [PtCl2L2] have a higher thermal stability than the corresponding Pt(0) complexes of the type [PtLn], with the exception of [Pt(SbPh3)3], which is more stable than [PtCl2(SbPh3)2]. Thermal stabilities of each of the complexes are compared with those of the others in the series. Mechanisms of thermal decomposition of complexes of the types [PtCl2L2] and [PtLn] are proposed. Residues of the samples were characterized by chemical tests and IR spectroscopy. The residue from the thermal decomposition of [PtCl2L2] (L is PPh3, AsPh3) and [Pt(PPh3)4] is metallic platinum. For [Pt(AsPh3)4] the residue is a mixture of Pt and As, whereas for the complexes containing SbPh3 the residues are mixtures of Pt and Sb. In these cases, the proportional contents of Pt and As or Pt and Sb correspond to the stoichiometry of these elements in the respective complexes. The complexes {[Pt(SbPh3)3]2N2}, {[Pt(SbPh3)3]2C2} lose N2 or the ethynediyl group at 130-150°C and are transformed into [Pt(SbPh3)3]. © 1995.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This article deals with synthesis and reactivity of complexes with triphenylstibine (SbPh3) as the ligand. A comparative study of analogous complexes of triphenylphosphine (PPh3) and triphenylarsine (AsPh3) with platinum in the oxidation states zero, two and four is included. The bibliographic revision includes publications since 1936, when the first Pt(II) complex with triphenylstibine was described.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two cis-related palladium(II) complexes [PdCl(2)(PPh(3))(tu)] (1) and [PdCl(2)(tmen)] (2) {PPh(3) = triphenylphosphine, tu = thiourea, tmen = N,N,N,N-tetramethylethylenediamine} have been synthesized and characterized by elemental analysis, IR and NMR spectroscopies, and single crystal X-ray diffraction. In 1, N-H center dot center dot center dot Cl hydrogen bonds are responsible for the formation of a dimer which connects to an adjacent one through weak C-H center dot center dot center dot Cl interactions, yielding 1D tapes. The crystal packing of compound 2 consists of zigzag ribbons of [PdCl(2)(tmen)] self-assembled by C-H center dot center dot center dot Cl hydrogen bonds which also holds the chains together, giving rise to a 2D layered structure. (C) 2006 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The triply chloro-bridged binuclear complexes [Ph3X=O...H...O=XPh3][Ru2Cl7(XPh3)(2)].0.5(CH2Cl2) (H2O) (X = As or P) were obtained from [RuCl3(XPh3)(2)DMA].DMA (DMA = dimethylacetamide) CH2Cl2/Et2O solution. The structures were characterized by X-ray diffraction studies. The complexes are formed from two Ru atoms bridged by three chloride anions. The two ruthenium atoms are also coordinated to two non-bridging Cl atoms and an AsPh3 or PPh3 ligand respectively. As an interesting feature, the cations of these complexes are protons, trapped in a very short hydrogen bond between two triphenylarsine or triphenylphosphine oxide molecules.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The synthesis, spectroscopic characterization, and thermal analysis of the compounds [Pd(X)(2)(mtu)(PPh3)] (X = Cl- (1), SCN- (2); mtu = N-methylthiourea; PPh3 = triphenylphosphine) and [Pd(X)(2)(phtu)(PPh3)] (X = Cl- (3), SCN- (4); phtu = N-phenylthiourea) are described. The thermal decomposition of the compounds occurs in two, three, or four stages and the final decomposition products were identified as Pd-0 by X-ray powder diffraction. The thermal stability order of the complexes is 4 > 3 > 2 > 1.