29 resultados para terbium
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
The binding of the cations thallium(I), calcium(II) and terbium(III) to methyl methacrylate-methacrylic acid copolymers with different fractions of acid groups (x) has been studied in aqueous solution at, various pH values using the fluorescence of covalently bonded 9-vinyl anthracene as a probe. In all cases, the extent of binding increases as a function of the charge of the polymer with either increasing fraction of carboxylic acids or of pH. However, differences are observed in the behavior of the three cations, With Tl(I), quenching of the anthracene group fluorescence is observed. indicating that the thallium(I) approaches the probe and suggesting that the alkylanthracene is probably in a relatively polar region. Binding constants have been determined from anthracene quenching data and from studies with the fluorescent-probe sodium pyrenetetrasulfonate, Good agreement is obtained between the two methods, and values for the binding constants increase from 250 to 950 M-1 as x increases from 0.39 to 1. It is suggested that the cation is held in the polyelectrolyte domain, partly by Debye-Huckel effects and partly by more specific interactions. Stronger binding is found with calcium(II) and terbium(III), and in this case increases in fluorescence intensity are observed on complexation due to the anthracene group being in a more hydrophobic region, probably as a result of conformational changes in the polymer chain. In the former case the stoichiometry of the interaction was determined from the fluorescence data to involve two carboxylate groups bound per calcium. Association constants were found using murexide as an indicator of free calcium to vary from 8400 to 37 000 M-1 as x increases from 0.39 to 1. It is suggested that in this case specific calcium(II)-carboxylate interactions contribute to the binding. With terbium(III), a greater increase in the probe fluorescence intensity was observed than with calcium, and it is suggested that the interaction with the polymer is even stronger, leading to a more pronounced conformational change in the polymer. It is proposed that the terbium(III) interacts with sis carboxylic groups on the polymer chain, with three being coordinated and three attracted by electrostatic interactions.
Resumo:
This work deals with the synthesis and thermal decomposition of complexes of general formula: Ln(beta-dik)(3)L (where Ln=Tb(+3), beta-dik=4,4,4-trifluoro-1-phenyl-1,3butanedione(btfa) and L=1,10-fenantroline(phen) or 2,2-bipiridine(bipy). The powders were characterized by melting point, FTIR spectroscopy, LTV-visible, elemental analysis, scanning differential calorimeter(DSC) and thermogravimetry(TG). The TG/DSC curves were obtained simultaneously in a system DSC-TGA, under nitrogen atmosphere. The experimental conditions were: 0.83 ml.s(-1) carrier gas flow, 2.0 +/- 0.5 mg samples and 10 degrees C.min(-1) heating rate. The CHN elemental analysis of the Tb(btfa)(3)bipy and Tb(btfa)(3)phen complexes, are in good agreement with the expected values. The IR spectra evinced that the metal ion is coordinated to the ligands via C=O and C-N groups. The TG/DTG/DSC curves of the complexes show that they decompose before melting. The profiles of the thermal decomposition of the Tb(btfa)3phen and Tb(btfa)3bipy showed six and five decomposition stages, respectively. Our data suggests that the thermal stability of the complexes under investigation followed the order: Tb(btfa)(3)phen < Tb(btfa)(3)bipy.
Resumo:
Infrared-to-visible frequency upconversion through cooperative energy-transfer and thermal effects in Tb3+/Yb3+-codoped tellurite glasses excited at 1.064 mum is investigated. Bright luminescence emission around 485, 550, 590, 625 and 65 nm, identified as due to the D-5(4) --> F-7(J) (J= 6, 5, 4, 3, and 2) transitions of the terbium ions, respectively, was recorded. The excitation of the D-5(4) emitting level of the Tb3+ ions is assigned to cooperative energy-transfer from pairs of ytterbium ions.. The effect of temperature on the upconversion process was examined and the results revealed a fourfold upconversion enhancement in the 300-500 K interval. The enhancement of the upconversion process is due to the temperature dependence of the Yb3+-sensitizer absorption cross-section under anti-Stokes excitation. A rate-equation. model using multiphonon-assisted absorption for the ytterbium excitation combined with the energy migration effect between Yb-Yb pair, and Tb3+ ground-state depopulation via multiphonon excitation of the F-7(J) excited states describes quite well the experimental results. (C) 2003 Elsevier B.V. B.V. All rights reserved.
Resumo:
Strong interest in developing technology for visual information. stimulates research for thin film electroluminescent devices. Here, for the first time, we report that thulium- and terbium-doped zinc-oxide films are suitable for electroluminescence applications. Two different devices were assembled as lTO/LiF/ZnO:RE/LiF/Al or ITO/SiO2/ZnO:RE/SiO2/Al, where ZnO:RE is a film of zinc oxide containing 10 at% of Tb3+ or Tm3+. Electroluminescence spectra show that besides a broad emission band with maximum around 650 nm assigned to ZnO, also emission lines from Tb3+ at 484 nm (D-5(4) -> F-7(6)), 543 nm (D-5(4) -> F-7(6)), and 589 nm (D-5(4) -> F-7(4)), or from Tm3+ at 478 nm ((1)G(4) -> H-3(6)), and 511 mn (D-1(2) -> H-3(5)) were detected. Intensity of emission as function of applied voltage and current-voltage characteristic are shown and discussed. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Cooperative energy transfer upconversion luminescence is investigated in Tb(3+)/Yb(3+)-codoped PbGeO(3)-PbF(2)-CdF(2) glass-ceramic and its precursor glass under resonant and off resonance infrared excitation. Bright UV-visible emission signals around 384, 415, 438 nm, and 473-490, 545, 587, and 623 nm are identified as due to the (5)D(3)((5)G(6))->(7)F(1) (J=6,5,4) and (5)D(4)->(7)F(1) (J=6,5,4,3) transitions, respectively, and readily observed. The results indicate that cooperative energy transfer between ytterbium and terbium. ions followed by excited state absorption are the dominant upconversion excitation mechanisms involved. Comparison of the upconversion process in a glass-ceramic sample and its glassy precursor revealed that the former present much higher upconversion efficiency. The dependence of the upconversion emission upon pump power, temperature, and doping content is also examined.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Cooperative energy-transfer upconversion luminescence in Tb 3+/Yb 3+-codoped PbGeO 3-PbF 2-CdF 2 vitroceramic and its precursor glass under resonant and off-resonance infrared excitation, is investigated. Bright UV-visible emission signals around 384, 415, 438 nm, and 473-490, 545, 587, and 623 nm, identified as due to the 5D 3( 5G 6 → 7F J(J=6,5,4) and 5D 4 → 7F J(J=6,5,4,3) transitions, respectively, were readily observed. The results indicate that cooperative energy-transfer between ytterbium and terbium ions followed by excited-state absorption are the dominant upconversion excitation mechanisms herein involved. The comparison of the upconversion process in a vitroceramic sample and its glassy precursor revealed that the former present much higher upconversion efficiency. The dependence of the upconversion emission upon pump power, temperature, and doping content is also examined.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Gadolinium oxysulfide powders doped with different Tb3+ concentrations were prepared from sulfur vaporization on rare earths' basic carbonate precursors. Single-phase Gd2O2S samples were obtained, with Tb3+ doping up to 9 at%. The study of the excitation mechanisms revealed that the Tb3+ emission might occur after the direct Tb3+ excitation either by energy transfer from Gd3+ or from the phosphor host. The characteristic terbium emission lines were observed, resulting from the radiative decay from D-5(3) or D-5(4), to F-7(j) levels. The cross-relaxation phenomenon was observed and its effects on the materials emission color were discussed based on the CIE diagram. By using time-resolved spectroscopy, D-5(3) -> F-7(J) and D-5(4) -> F-7(J) transitions were separated. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
In this work, GdAlO3:RE3+ (RE = Eu or Tb) was successfully prepared by the Pechini method at lower temperatures when compared to others methods as solid-state synthesis and sol-gel process. In accordance to the XRD data, the fully crystalline single-phase GdAlO3 could be obtained at 900 degrees C. The differential thermal analysis (DTA) shows a crystallization peak at 850 degrees C. The samples are composed by monocrystalline particles (50-120 nm) exhibiting the formation of aggregates among them, which indicates the beginning of the sinterization process. This feature indicates a strong tendency to the formation of aggregates, which is a suitable ability for the close-packing of particles, and hence a potential application in X-ray intensifying screens. Luminescence measurements indicate Gd3+ -> RE3+ energy transfer. The Eu3+ emission spectra exhibit all the characteristics D-5(0) -> F-7(j) transitions and the observed profile suggests that RE3+ ions occupy at least one site without center of symmetry. For terbium-doped samples, the D-5(3) -> F-7(j) (blue emission) and D-5(4) -> F-7(j) (green emission) transitions were observed and the ratio between them may depend on the Tb3+ content due to cross-relaxation processes. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Solid-state compounds of general formula LnL(3).2H(2)O, where Ln is heavier trivalent lanthanides and yttrium, L is 4-chlorobenzylidenepyruvate have been synthetised.On heating these compounds decompose in steps. They lose the hydration water in the first step and the thermal decomposition of the anhydrous compounds occurs with the formation of oxochloride (Eu, Gd); mixture of oxide and oxochloride that decrease with increasing of atomic number of metal (Tb-Tm); or oxide (Yb, Lu, Y) as final residue, up to 900degreesC. The dehydration enthalpies found for terbium, holmium, ytterbium and yttrium compounds were: 34.93, 42.40, 57.39 and 62.24 kJ mol(-1), respectively.
Resumo:
Energy-transfer excited upconversion luminescence in Ho3+/Yb3+- and Tb3+/Yb3+ -codoped PbGeO3-PbF2-CdF2 glass and glass-ceramic under infrared excitation is investigated. In Ho3+/Yb3+-codoped samples, green (545 nm), red (652 nm), and near-infrared (754 nm) upconversion emission corresponding to the S-5(2) (F-5(4)) -> I-5(8), F-5(5) -> I-5(8), and S-5(2)(F-5(4)) -> I-5(7) transitions, respectively, was observed. Blue (490 nm) emission assigned to the F-5(2,3) -> I-5(8) transition was also detected. In the Tb3+/Yb3+-codoped system, bright UV-visible emission around 384, 415, 438, 473-490, 545, 587, and 623 nm, identified as due to the D-5(3)((5)G(6)) -> F-7(J)(J = 6, 5, 4) and D-5(4) -> F-7(J)(J = 6, 5, 4, 3) transitions, was measured. The comparison of the upconversion process in glass ceramic and its glassy precursor revealed that the former samples present much higher upconversion efficiencies. The dependence of the upconversion emission upon pump power, and doping contents was also examined. The results indicated that successive energy-transfer between ytterbium and holmium ions and cooperative energy-transfer between ytterbium and terbium ions followed by excited-state absorption are the dominant upconversion excitation mechanisms herein involved. The viability of using the samples for three-dimensional solid-state color displays is also discussed. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)