47 resultados para steam generator

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

70.00% 70.00%

Publicador:

Resumo:

In the first paper of this paper (Part I), conditions were presented for the gas cleaning technological route for environomic optimisation of a cogeneration system based in a thermal cycle with municipal solid waste incineration. In this second part, an environomic analysis is presented of a cogeneration system comprising a combined cycle composed of a gas cycle burning natural gas with a heat recovery steam generator with no supplementary burning and a steam cycle burning municipal solid wastes (MSW) to which will be added a pure back pressure steam turbine (another one) of pure condensation. This analysis aims to select, concerning some scenarios, the best atmospheric pollutant emission control routes (rc) according to the investment cost minimisation, operation and social damage criteria. In this study, a comparison is also performed with the results obtained in the Case Study presented in Part I. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The use of mean values of thermal and electric demand can be justifiable for synthesising the configuration and for estimating the economic results because it simplifies the analysis in a preliminary feasibility study of a cogeneration plant. For determining the cogeneration scheme that best fits the energetic needs of a process several cycles and combinations must be considered, and those technically feasible will be analysed according to economic models. Although interesting for a first approach, this procedure do not consider that the peaks and valleys present in the load patterns will impose additional constraints relatively to the equipment capacities. In this paper, the effects of thermal and electric load fluctuation to the cogeneration plant design were considered. An approach for modelling these load variability is proposed for comparing two competing thermal and electric parity competing schemes. A gas turbine associated to a heat recovery steam generator was then proposed and analysed for thermal- and electric-following operational strategies. Thermal-following option revealed to be more attractive for the technical and economic limits defined for this analysis. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The increase in the use of natural gas in Brazil has stimulated public and private sectors to analyse the possibility of using combined cycle systems for generation of electrical energy. Gas turbine combined cycle power plants are becoming increasingly common due to their high efficiency, short lead times, and ability to meet environmental standards. Power is produced in a generator linked directly to the gas turbine. The gas turbine exhaust gases are sent to a heat recovery steam generator to produce superheated steam that can be used in a steam turbine to produce additional power. In this paper a comparative study between a 1000 MW combined cycle power plant and 1000 kW diesel power plant is presented. In first step, the energetic situation in Brazil, the needs of the electric sector modification and the needs of demand management and integrated means planning are clarified. In another step the characteristics of large and small thermoelectric power plants that use natural gas and diesel fuel, respectively, are presented. The ecological efficiency levels of each type of power plant is considered in the discussion, presenting the emissions of particulate material, sulphur dioxide (SO2), carbon dioxide (CO2) and nitrogen oxides (NOx). (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, a thermoeconomic functional analysis method based on the Second Law of Thermodynamics and applied to analyze four cogeneration systems is presented. The objective of the developed technique is to minimize the operating costs of the cogeneration plant, namely exergetic production cost (EPC), assuming fixed rates of electricity production and process steam in exergy base. In this study a comparison is made between the same four configurations of part I. The cogeneration system consisting of a gas turbine with a heat recovery steam generator, without supplementary firing, has the lowest EPC. (C) 2004 Published by Elsevier Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work it was performed energetic and exergetic analyses of three thermal plants to assessment a cogeneration system in expansion of a sugar-alcohol factory. The initial configuration considered is constituted by a low pressure steam generator, single stage steam turbines for electricity generation and crusher, shredder and mills with mechanical driving. In the intermediary configuration, the low pressure steam generator was substituted by another which generates steam at higher pressure and higher temperature, the steam turbines for electricity generation were substituted by a multiple stages extraction-condensation turbine and the other steam turbines were maintained. The final configuration consists in the substitution of these last turbines by electrical motors. Thermodynamic analyses were performed to evaluate the equipment and the overall plants efficiencies to permit a comparison among the plants. Besides of this, some important parameters of the sugar-alcohol factories were calculated.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper we present technical and economic studies of cogeneration systems utilizing combustion engines and gas turbines, applied in two establishments of the tertiary sector, regarding Brazilian conditions (according to Silveria, 1994). In the first step cogeneration systems utilizing combustion engines associated to absorption refrigeration systems are studied, in which electricity and cold air for a university building rate produced. In the second step some possibilities of the use of the gas turbine in cogeneration systems for a hospital are shown. In this case, the exhaust gases are utilized for the production of steam in a heat recovery steam generator (HRSG) or cold water in an absorption refrigeration system (for air conditioning) for the hospital building. The dynamic increment of the energy demand of Brazilian tertiary sector in last years can increase the installation of these cogeneration system (in compact version) as well as strengthen the development of the decentralized energy generation in Brazil.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The discussion about possibility of deployment of MSW incineration boilers to generate electricity in Brazil is the major topic of this paper. In this article are showed some advantages and disadvantages of this technology, as well as a methodology for the estimate of area for the main equipments of a steam generator for a boiler incineration

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Mecânica - FEG

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work a detailed thermodynamic analysis for an extraction-condensation steam turbine capable to drive a 40 MVA electricity generator in a sugar-alcohol factory was carried out. The use of this turbine in the cogeneration system showed that its efficiency contributed to increase the power generation, although the condensation reduces the overall efficiency of the plant. Sensibility analyses were performed to evaluate the behavior of the overall energy efficiency of a plant with the extraction-condensation turbine in function of the boiler efficiency, the specific consumption of steam in the processes and the condensation rate in the turbine. It was observed that the plant efficiency is very sensible to the condensation rate variation and it increases when there is an increase in the demand of steam for processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Steam explosion process is employed for the successful extraction of cellulose nanofibrils from pineapple leaf fibres for the first time. Steam coupled acid treatment on the pineapple leaf fibres is found to be effective in the depolymerization and defibrillation of the fibre to produce nanofibrils of these fibres. The chemical constituents of the different stages of pineapple fibres undergoing treatment were analyzed according to the ASTM standards. The crystallinity of the fibres is examined from the XRD analysis. Characterization of the fibres by SEM. AFM and TEM supports the evidence for the successful isolation of nanofibrils from pineapple leaf. The developed nanocellulose promises to be a very versatile material having the wide range of biomedical applications and biotechnological applications, such as tissue engineering, drug delivery, wound dressings and medical implants. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, cellulose nanofibers were extracted from banana fibers via a steam explosion technique. The chemical composition, morphology and thermal properties of the nanofibers were characterized to investigate their suitability for use in bio-based composite material applications. Chemical characterization of the banana fibers confirmed that the cellulose content was increased from 64% to 95% due to the application of alkali and acid treatments. Assessment of fiber chemical composition before and after chemical treatment showed evidence for the removal of non-cellulosic constituents such as hemicelluloses and lignin that occurred during steam explosion, bleaching and acid treatments. Surface morphological studies using SEM and AFM revealed that there was a reduction in fiber diameter during steam explosion followed by acid treatments. Percentage yield and aspect ratio of the nanofiber obtained by this technique is found to be very high in comparison with other conventional methods. TGA and DSC results showed that the developed nanofibers exhibit enhanced thermal properties over the untreated fibers. (C) 2010 Elsevier Ltd. All rights reserved.