6 resultados para semiconductors

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present work studied the influence of thermal treatment in oxygen rich atmosphere on heterogenous junctions in Mn-doped SnO2 polycrystalline system presenting varistor behavior. The samples were prepared by conventional oxide mixture methodology, and were submitted to heat treatment in oxygen rich atmosphere at 900 degrees C for 2h. The samples were characterized by X-ray diffraction, scanning electron microscopy, dc and ac electrical measurements. The results showed that there is an evident relationship between the microstructure heterogeneity and non-ohmic electrical properties. It was found that for this SnO2 center dot MnO-based varistor system the heat treatment in oxygen rich atmosphere does not necessarily increase the varistors properties, which was related to the decrease in the grain boundary resistance. The results are compared with Co-doped SnO2 varistors and ZnO based varistors. (C) 2008 WILEY-VCH Verlay GmbH & Co. KGaA, Weinheim.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using the hyperspherical adiabatic approach in a coupled-channel calculation, we present precise binding energies of excitons trapped by impurity donors in semiconductors within the effective-mass approximation. Energies for such three-body systems are presented as a function of the relative electron-hole mass sigma in the range 1 less than or equal to1/sigma less than or equal to6, where the Born-Oppenheimer approach is not efficiently applicable. The hyperspherical approach leads to precise energies using the intuitive picture of potential curves and nonadiabatic couplings in an ab initio procedure. We also present an estimation for a critical value of sigma (sigma (crit)) for which no bound state can be found. Comparisons are given with results of prior work by other authors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This text discusses about advantageous, powerful and limitations of admittance and dielectric spectroscopy in the characterization of polycrystalline semiconductors. In the context of polycrystalline semiconductors or dielectric materials, the admittance or dielectric frequency response analyses are shown to be sometimes more useful than impedance spectra analysis, mainly because information on the capacitances or deep trap states are possible to be monitored from admittance or dielectric spectra as a function of dopant concentration or annealing effects. The majority of examples of the application of admittance or dielectric analysis approach were here based on SnO2- and ZnO-based polycrystalline semiconductors devices presenting nonohmic properties. Examples of how to perform the characterization of Schottky barrier in such devices are clearly depicted. The approach is based on findings of the true Mott-Schottky pattern of the barrier by extracting the grain boundary capacitance value from complex capacitance diagram analysis. The equivalent circuit of such kind of devices is mainly consistent with the existence of three parallel elements: the high-frequency limit related to grain boundary capacitances, the complex incremental capacitance at intermediate frequency related to the deep trap relaxation and finally at low frequency region the manifestation of the conductance term representing the dc conductance of the multi-junction device. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present review describes mainly the history of SnO2-based voltage-dependent resistors, discusses the main characteristics of these polycrystalline semiconductor systems and includes a direct comparison with traditional ZnO-based voltage-dependent resistor systems to establish the differences and similarities, giving details of the basic physical principles involved with the non-ohmic properties in both polycrystalline systems. As an overview, the text also undertakes the main difficulties involved in processing SnO2- and ZnO-based non-ohmic systems, with an evaluation of the contribution of the dopants to the electronic properties and to the final microstructure and consequently to the system's non-ohmic behavior. However, since there are at least two review texts regarding ZnO-based systems [Levinson, L. M., and Philipp, H. R. Ceramic Bulletin 1985;64:639; Clarke, D. R. Journal of American Ceramic Society 1999;82:485], the main focus of the present text is dedicated to the SnO2-based varistor systems, although the basic physical principles described in the text are universally useful in the context of dense polycrystalline devices. However, the readers must be careful of how the microstructure heterogeneity and grain-boundary chemistry are capable to interfere in the global electrical response for particular systems. New perspectives for applications, commercialization and degradation studies involving SnO2-based polycrystalline non-ohmic systems are also outlined, including recent technological developments. Finally, at the end of this review a brief section is particularly dedicated to the presentation and discussions about others emerging non-ohmic polycrystalline ceramic devices (particularly based on perovskite ceramics) which must be deeply studied in the years to come, specially because some of these systems present combined high dielectric and non-ohmic properties. From both scientific and technological point of view these perovskite systems are quite interesting. (c) 2007 Elsevier Ltd. All rights reserved.