140 resultados para rock powder
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
The alteration of minerals in rocks and the availability of elements for plant nutrition require long periods of time, and microorganisms are thought to induce the release of potassium and phosphate from rocks. In this context, this work evaluates the role of the yeast Torulaspora globosa, isolated from the sugar cane rhizosphere, in the solubilization of potassium from alkaline ultramafic rock powder. The experiments were performed in liquid medium, with or without agitation, at 30°C with the following treatments: culture medium + alkaline ultramafic; culture medium + yeast suspension; and culture medium + yeast suspension + alkaline ultramafic. The results showed that as much as 38% of the total potassium in the rock was released in the medium with the yeast during a 15-day period of incubation. Acid production may be the mechanism by which the yeast solubilizes potassium because the total acidity increased during the sampling period. Agitation (which increased oxygen availability) resulted in approximately 20% more biosolubilization of the alkaline ultramafic rock than with the static culture. These data indicate the potential for this yeast in biosolubilization processes and biofertilizer production.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Measurements of the third harmonic of the AC-susceptibility were employed to determine the boundaries of the linear regime of the magnetic response of Nb powder. Non-linear contributions to the magnetic response reveal the occurrence of a structured phase, disappearing as the vortex lattice melts to the liquid state. A systematic study of the third harmonic was conducted to determine how its onset temperature depends on experimental parameters, such as the frequency and amplitude of the excitation field. The melting line (ML) has been extracted from the onset temperature measured at low-frequencies and low-excitation fields in the presence of DC magnetic fields. The study indicates that the ML can be described by a 3D vortex-glass model, except at lower fields, where the system experiences a depinning crossover, and the best description of the experimental data is provided by a 3D Bose-glass model. (c) 2008 Elsevier B. V. All rights reserved.
Resumo:
In this work it is reported the magnetic behavior of submicron and mesoscopic-size superconducting YBCO powders, prepared by a modified polymeric precursors method. The grain size and microstructure were analyzed using scanning electron microscopy ( SEM). Measurements of magnetization and AC-susceptibility as a function of temperature were performed with a quantum design SQUID magnetometer. Our results indicated significant differences on the magnetic propreties, in connection with the calcination temperature and the pressure used to pelletize the samples. This contribution is part of an effort to study vortex dynamics and magnetic properties of submicron and mesoscopic-size superconducting samples. (C) 2008 Elsevier B. V. All rights reserved.
Resumo:
Aiming identification of the components most affected by corrosion under saline environment conditions, we have carried out X-ray diffraction measurements in ceramic and bond materials, all in the powder form. The ceramic is analyzed before and after thermal annealing at 1000 degrees C, showing the same DRX peaks, although better defined after annealing. Identification suggests the presence of Al(6)Si(2)O(13) (Mullite) and SiO(2) (Quartz). Analysis of the junction (bond) material shows similar peaks, but a metallic preponderance is observed. Thermal annealing of the junction is done at much lower temperature, because it melts in the range 135 degrees C-170 degrees C, when a whitish smoke begins to show up along with strong sulfur odor.
Resumo:
Titanium alloys have several advantages over ferrous and non-ferrous metallic materials, such as high strengthto-weight ratio and excellent corrosion resistance. A blended elemental titanium powder metallurgy process has been developed to offer low cost commercial products. The process employs hydride-dehydride (HDH) powders as raw material. In this work, results of the Ti-35Nb alloy sintering are presented. This alloy due to its lower modulus of elasticity and high biocompatibility is a promising candidate for aerospace and medical use. Samples were produced by mixing of initial metallic powders followed by uniaxial and cold isostatic pressing with subsequent densification by isochronal sintering between 900 up to 1600 °C, in vacuum. Sintering behavior was studied by means of microscopy and density. Sintered samples were characterized for phase composition, microstructure and microhardness by X-ray diffraction, scanning electron microscopy and Vickers indentation, respectively. Samples sintered at high temperatures display a fine plate-like alpha structure and intergranular beta. A few remaining pores are still found and density above 90% for specimens sintered in temperatures over 1500 °C is reached.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Objectives. The purpose of this paper is to modify the conventional calcium fluoro-aluminosilicate glass, which is used in the formation of glass ionomer cements (CIGs) by the niobium addition and to study the properties of GICs obtained.Materials and methods. Sol-gel process was used to prepare the powder at lower temperature than fusion method. Glass-ceramic powder obtained in this way was used to prepare the GICs. The properties such as working and setting times, microhardness and diametral tensile strength were evaluated for the experimental GICs and a commercial luting cement.Results. The ideal powder:liquid (P:L) ratio determined to prepare the experimental GICs was equal to 1:1. The cements prepared using this ratio showed working and setting times similar to the commercial GICs. in mechanical tests it was observed that microhardness and diametral tensile strength of the experimental GICs decreased significantly with the reduction of P:L ratio. on the other hand, the results obtained in microhardness tests indicated that the presence of niobium was a positive factor.Significance. The chemical process allows the development of glass-ceramic powder at 600 degrees C which is the goal of the present paper. It was concluded that GICs containing niobium might be used in dental applications and these results encourage further researches on other compositions. (c) 2007 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The present study cross-sectionally investigated the influence of training status, route difficulty and upper body aerobic and anaerobic performance of climbers on the energetics of indoor rock climbing. Six elite climbers (EC) and seven recreational climbers ( RC) were submitted to the following laboratory tests: ( a) anthropometry, (b) upper body aerobic power, and ( c) upper body Wingate test. on another occasion, EC subjects climbed an easy, a moderate, and a difficult route, whereas RC subjects climbed only the easy route. The fractions of the aerobic (WAER), anaerobic alactic (W-PCR) and anaerobic lactic (W-[La(])-) systems were calculated based on oxygen uptake, the fast component of excess post-exercise oxygen uptake, and changes in net blood lactate, respectively. on the easy route, the metabolic cost was significantly lower in EC [ 40.3 ( 6.5) kJ] than in RC [60.1 ( 8.8) kJ] ( P < 0.05). The respective contributions of the WAER, WPCR, and W-[La(])- systems in EC were: easy route = 41.5 (8.1), 41.1 (11.4) and 17.4% (5.4), moderate route = 45.8 (8.4), 34.6 (7.1) and 21.9% (6.3), and difficult route = 41.9 (7.4), 35.8 (6.7) and 22.3% (7.2). The contributions of the WAER, WPCR, and W-[La(])- systems in RC subjects climbing an easy route were 39.7 (5.0), 34.0 (5.8), and 26.3% (3.8), respectively. These results indicate that the main energy systems required during indoor rock climbing are the aerobic and anaerobic alactic systems. In addition, climbing economy seems to be more important for the performance of these athletes than improved energy metabolism.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Water sorption isotherms for vacuum-dried persimmon pulp (PP) powder were determined in the temperature range of 20-50C, and the effects of maltodextrin (MD) or gum arabic (GA) addition on the water sorption behavior of the dried powders were analyzed. Several models were evaluated to fit the experimental data and the Guggenheim-Anderson-de Boer model was selected as the most adequate to describe the observed behavior. Addition of encapsulants affected the isotherms: at the same water activity, PP powder with added GA (PP + GA) or MD (PP + MD) presented lower equilibrium water content than pure PP and were less affected by temperature variations. Samples of PP + MD presented lower equilibrium moisture content than those of PP + GA. The isosteric heats of sorption of pulp powders with encapsulants were higher (less negative) than those of PP, suggesting that there are more active polar sites in PP than in pulp powder containing encapsulants.PRACTICAL APPLICATIONSThe choice of persimmon to carry out this work was due to the large persimmon production available in Brazil; moreover, persimmon pulp is rich in vitamin C, vitamin A and iron, as well as in phenolic compounds. Drying of fruit pulps with high sugar content presents technical difficulties because the hygroscopicity and thermoplasticity of the resulting powders when exposed to high temperature and relative humidity. For this reason, addition of high-molar-mass biopolymers, such as maltodextrin or gum arabic, is a strategy to aid drying and to improve storage stability. Knowledge of water sorption isotherms and net isosteric heats of sorption is important to various food processing operations, including drying, storage and packaging. They are useful in calculating time and energy consumptions during drying, modeling moisture changes during storage and predicting shelf life of food products.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)