86 resultados para radio frequency magnetron sputtering
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Zinc oxide (ZnO) thin films were prepared using reactive radio-frequency magnetron sputtering of a pure metallic zinc target onto glass substrates. The evolution of the surface morphology and the optical properties of the films were studied as a function of the substrate temperature, which was varied from 50 to 250 C. The surface topography of the samples was examined using atomic force microscopy (AFM), and their optical properties were studied via transmittance measurements in the UV-Vis-NIR region. DRX and AFM analyses showed that the surface morphology undergoes a structural transition at substrate temperatures of around 150 C. Actually, at 50 C the formation of small grains was observed while at 250 C the grains observed were larger and had more irregular shapes. The optical gap remained constant at ∼3.3 eV for all films. In the visible region, the average optical transmittance was 80 %. From these results, one can conclude that the morphological properties of the ZnO thin films were more greatly affected by the substrate temperature, due to mis-orientation of polycrystalline grains, than were the optical properties. © 2013 Springer Science+Business Media New York.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Oxygen-deficient TiO2 films with enhanced visible and near-infrared optical absorption have been deposited by reactive sputtering using a planar diode radio frequency magnetron configuration. It is observed that the increase in the absorption coefficient is more effective when the O-2 gas supply is periodically interrupted rather than by a decrease of the partial O-2 gas pressure in the deposition plasma. The optical absorption coefficient at 1.5 eV increases from about 1 x 10(2) cm(-1) to more than 4 x 10(3) cm(-1) as a result of the gas flow discontinuity. A red-shift of similar to 0.24 eV in the optical absorption edge is also observed. High resolution transmission electron microscopy with composition analysis shows that the films present a dense columnar morphology, with estimated mean column width of 40nm. Moreover, the interruptions of the O-2 gas flow do not produce detectable variations in the film composition along its growing direction. X-ray diffraction and micro-Raman experiments indicate the presence of the TiO2 anatase, rutile, and brookite phases. The anatase phase is dominant, with a slight increment of the rutile and brookite phases in films deposited under discontinued O-2 gas flow. The increase of optical absorption in the visible and near-infrared regions has been attributed to a high density of defects in the TiO2 films, which is consistent with density functional theory calculations that place oxygen-related vacancy states in the upper third of the optical bandgap. The electronic structure calculation results, along with the adopted deposition method and experimental data, have been used to propose a mechanism to explain the formation of the observed oxygen-related defects in TiO2 thin films. The observed increase in sub-bandgap absorption and the modeling of the corresponding changes in the electronic structure are potentially useful concerning the optimization of efficiency of the photocatalytic activity and the magnetic doping of TiO2 films. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4724334]
Resumo:
The RF-magnetron sputtering technique has been used to deposit polycrystalline thin films of layered-structured ferroelectric BaBi2Nb2O9 (BBN). The XRD patterns for the films annealed at 700degreesC for 1 hour show the presence of the BBN phase as well as the BaNb2O6 secondary phase. A better crystallization of the BBN phase and an inhibition of the secondary phase is obtained with the increase of temperature. The surface of the prepared films was rather dense and smooth with no cracks. The 300 nm thick BBN thin films exhibited a room-temperature dielectric constant of about 779 with a dissipation factor of 0.09 at a frequency of 100 kHz.
Resumo:
We study the surface morphology evolution of ZnO thin films grown on glass substrates as a function of thickness by RF magnetron sputtering technique. The surface topography of the samples is measured by atomic force microscopy (AFM). All AFM images of the films are analyzed using scaling concepts. The results show that the surface morphology is initially formed by a small grains structure. The grains increase in size and height with growth time resulting in the formation of a mounds-like structure. The growth exponent, beta, and the exponent defining the evolution of the characteristic wavelength of the surface, p, amounted to beta = 0.76 +/- 0.08 and p = 0.3 +/- 0.05. From these exponents, the surface morphology is determined by the nonlocal shadowing effects, that is the dominant mechanism, due to the incident deposition particles during film growth.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We have utilized infra-red and optical absorption measurements, grazing incidence X-ray diffraction (GIXRD) and extended X-ray absorption fine structure (EXAFS) measurements to investigate the influence of hydrogenation on the optical and structural properties of GaAs thin films prepared by rf-magnetron sputtering. Hydrogenation induces distinct changes in the optical properties, namely shifts in the absorption edges and reduction of the Urbach energy. Such modifications are correlated to a reduction in structural disorder as determined by EXAFS and the increase of crystallinity determined by GIXRD. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The structural and vibrational properties of nanocrystalline Ga1-xMnxN films deposited by reactive magnetron sputtering were analyzed in a wide composition range (0 < x < 0.18). The films were structurally characterized using x-ray diffraction with Rietveld refinement. The corresponding vibrational properties were investigated using micro-Raman and Fourier transform infrared spectroscopies. The films present a high crystallized fraction, crystallites having wurtzite structure, and high orientation texture with the c axis oriented perpendicular to the substrate surface. Rietveld analysis indicates that Mn atoms are incorporated substitutionally into Ga positions and show that the ionic character of cation-N bonds along the c axis is favored by the Mn incorporation. No evidence for Mn segregation or Mn rich phases was found in the composition range analyzed. Micro-Raman scattering spectra and infrared absorption experiments showed progressive changes with the increase of x and monotonic shifts of the GaN TO and LO peaks to lower frequencies. The structural and vibrational analyses are compared and the influence of Mn on the static and dynamic properties of the lattice is analyzed. (C) 2007 American Institute of Physics.
Resumo:
We investigate the effect of the hydrogen intentional incorporation on the structural properties of the amorphous gallium arsenide prepared by rf-magnetron sputtering technique. The properties of the non-hydrogenated films are: band gap of 1.4 eV (E-04), Urbach energy of 110 meV, stoichiometric composition ([As]/[Ga] = 0.50), and dark conductivity of about 3.2 x 10(-5) (Omega.cm)(-1). Hydrogen was incorporated in the films by the introduction of an electronically controlled H-2 flux during deposition, keeping constant the other deposition parameters. It was observed that small hydrogen incorporation produces a great change in the structural properties of the films. The main changes result from the formation of GaAs nanocrystals with mean sizes of about 7 nm into the amorphous network.
Resumo:
This article reports on a series of experiments with polyethylene terepthalate (PET) treated in a radio frequency plasma reactor using argon and oxygen as a gas fuel, for treatment times equal to 5 s, 20 s, 30 s, and 100 s. The mechanical strength modification of PET fibers, evaluated by tensile tests on monofilaments, showed that oxygen and argon plasma treatment resulted in a decrease in the average tensile strength compared with the untreated fibers. This reduction in tensile strength is more significant for argon plasma and is very sensitive to the treatment time for oxygen plasma. Scanning electron microscopy (SEM) used to analyze the effects of cold plasma treatment on fiber surfaces indicates differences in roughness profiles depending on the type of treatments, which were associated with variations in mechanical strength. Differences in the roughness profile, surveyed through an image analysis method, provided the distance of roughness interval, D-ri. This parameter represents the number of peaks contained in a unit length and was introduced to correlate fiber surface condition, before and after cold plasma treatments, and average tensile strength. Statistical analysis of experimental data, using Weibull cumulative distribution and linear representation, was performed to explain influences of treatment time and environmental effects on mechanical properties. The shape parameter, alpha, and density parameter, beta, from the Weibull distribution function were used to indicate the experimental data range and to confirm the mechanical performance obtained experimentally.
Resumo:
The structural and optical properties of nanocrystalline GaN and GaN:H films grown by RF-tnagnetron sputtering are focused here. The films were grown using a Ga target and a variety of deposition parameters (N 2/H 2/Arflow rates, RF power, and substrate temperatures). Si (100) and fused silica substrates were used at relatively low temperatures (T s ≤ 420K). The main effects resulting from the deposition parameters variations on the films properties were related to the presence of hydrogen in the plasma. The X-ray diffraction analysis indicates that the grain sizes (∼15nm) and the crystallized volume fraction significantly decrease when hydrogen is present in the plasma. The optical absorption experiments indicate that the hydrogenated films have absorption edges very similar to that of GaN single crystal films reported in the literature, while the non-hydrogenated samples present larger absorption tails encroaching into the gap energies.
Resumo:
Pós-graduação em Ciência e Tecnologia de Materiais - FC
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)