184 resultados para power flow
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The conventional Newton and fast decoupled power flow (FDPF) methods have been considered inadequate to obtain the maximum loading point of power systems due to ill-conditioning problems at and near this critical point. It is well known that the PV and Q-theta decoupling assumptions of the fast decoupled power flow formulation no longer hold in the vicinity of the critical point. Moreover, the Jacobian matrix of the Newton method becomes singular at this point. However, the maximum loading point can be efficiently computed through parameterization techniques of continuation methods. In this paper it is shown that by using either theta or V as a parameter, the new fast decoupled power flow versions (XB and BX) become adequate for the computation of the maximum loading point only with a few small modifications. The possible use of reactive power injection in a selected PV bus (Q(PV)) as continuation parameter (mu) for the computation of the maximum loading point is also shown. A trivial secant predictor, the modified zero-order polynomial which uses the current solution and a fixed increment in the parameter (V, theta, or mu) as an estimate for the next solution, is used in predictor step. These new versions are compared to each other with the purpose of pointing out their features, as well as the influence of reactive power and transformer tap limits. The results obtained with the new approach for the IEEE test systems (14, 30, 57 and 118 buses) are presented and discussed in the companion paper. The results show that the characteristics of the conventional method are enhanced and the region of convergence around the singular solution is enlarged. In addition, it is shown that parameters can be switched during the tracing process in order to efficiently determine all the PV curve points with few iterations. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
This work presents an approach for geometric solution of an optimal power flow (OPF) problem for a two bus system (a slack and a PV busses). Additionally, the geometric relationship between the losses minimization and the increase of the reactive margin and, therefore, the maximum loading point, is shown. The algebraic equations for the calculation of the Lagrange multipliers and for the minimum losses value are obtained. These equations are used to validate the results obtained using an OPF program. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
The parameterized fast decoupled power flow (PFDPF), versions XB and BX, using either theta or V as a parameter have been proposed by the authors in Part I of this paper. The use of reactive power injection of a selected PVbus (Q(PV)) as the continuation parameter for the computation of the maximum loading point (MLP) was also investigated. In this paper, the proposed versions obtained only with small modifications of the conventional one are used for the computation of the MLP of IEEE test systems (14, 30, 57 and 118 buses). These new versions are compared to each other with the purpose of pointing out their features, as well as the influence of reactive power and transformer tap limits. The results obtained with the new approaches are presented and discussed. The results show that the characteristics of the conventional FDPF method are enhanced and the region of convergence around the singular solution is enlarged. In addition, it is shown that these versions can be switched during the tracing process in order to efficiently determine all the PV curve points with few iterations. A trivial secant predictor, the modified zero-order polynomial, which uses the current solution and a fixed increment in the parameter (V, theta, or mu) as an estimate for the next solution, is used for the predictor step. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
The conventional Newton and fast decoupled power flow methods are considered inadequate for obtaining the maximum loading point of power systems due to ill-conditioning problems at and near this critical point. At this point, the Jacobian matrix of the Newton method becomes singular. In addition, it is widely accepted that the P-V and Q-theta decoupling assumptions made for the fast decoupled power flow formulation no longer hold. However, in this paper, it is presented a new fast decoupled power flow that becomes adequate for the computation of the maximum loading point by simply using the reactive power injection of a selected PV bus as a continuation parameter. Besides, fast decoupled methods using V and 0 as parameters and a secant predictor are also presented. These new versions are compared to each other with the purpose of pointing out their features, as well as the influence of reactive power and transformer tap limits. The results obtained for the IEEE systems (14 and 118 buses) show that the characteristics of the conventional method are enhanced and the region of convergence around the singular solution is enlarged.
Resumo:
The conventional Newton's method has been considered inadequate to obtain the maximum loading point (MLP) of power systems. It is due to the Jacobian matrix singularity at this point. However, the MLP can be efficiently computed through parameterization techniques of continuation methods. This paper presents and tests new parameterization schemes, namely the total power losses (real and reactive), the power at the slack bus (real or reactive), the reactive power at generation buses, the reactive power at shunts (capacitor or reactor), the transmission lines power losses (real and reactive), and transmission lines power (real and reactive). Besides their clear physical meaning, which makes easier the development and application of continuation methods for power systems analysis, the main advantage of some of the proposed parameters is that its not necessary to change the parameter in the vicinity of the MLP. Studies on the new parameterization schemes performed on the IEEE 118 buses system show that the ill-conditioning problems at and near the MLP are eliminated. So, the characteristics of the conventional Newton's method are not only preserved but also improved. (C) 2003 Elsevier B.V. B.V. All rights reserved.
Resumo:
This paper presents for the first time how to easily incorporate facts devices in an optimal active power flow model such that an efficient interior-point method may be applied. The optimal active power flow model is based on a network flow approach instead of the traditional nodal formulation that allows the use of an efficiently predictor-corrector interior point method speed up by sparsity exploitation. The mathematical equivalence between the network flow and the nodal models is addressed, as well as the computational advantages of the former considering the solution by interior point methods. The adequacy of the network flow model for representing facts devices is presented and illustrated on a small 5-bus system. The model was implemented using Matlab and its performance was evaluated with the 3,397-bus and 4,075-branch Brazilian power system which show the robustness and efficiency of the formulation proposed. The numerical results also indicate an efficient tool for optimal active power flow that is suitable for incorporating facts devices.
Resumo:
Continuation methods have been long used in P-V curve tracing due to their efficiency in the resolution of ill-conditioned cases, with close to singular Jacobian matrices, such as the maximum loading point of power systems. Several parameterization techniques have been proposed to avoid matrix singularity and successfully solve those cases. This paper presents a simple geometric parameterization technique to overcome the singularity of the Jacobian matrix by the addition of a line equations located at the plane determined by a bus voltage magnitude and the loading factor. This technique enlarges the set of voltage variables that can be used to whole P-V curve tracing, without ill-conditioning problems and no need of parameter changes. Simulation results, obtained for large realistic Brazilian and American power systems, show that the robustness and efficiency of the conventional power flow are not only preserved but also improved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This paper presents a method for calculating the power flow in distribution networks considering uncertainties in the distribution system. Active and reactive power are used as uncertain variables and probabilistically modeled through probability distribution functions. Uncertainty about the connection of the users with the different feeders is also considered. A Monte Carlo simulation is used to generate the possible load scenarios of the users. The results of the power flow considering uncertainty are the mean values and standard deviations of the variables of interest (voltages in all nodes, active and reactive power flows, etc.), giving the user valuable information about how the network will behave under uncertainty rather than the traditional fixed values at one point in time. The method is tested using real data from a primary feeder system, and results are presented considering uncertainty in demand and also in the connection. To demonstrate the usefulness of the approach, the results are then used in a probabilistic risk analysis to identify potential problems of undervoltage in distribution systems. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This work presents the application of a multiobjective evolutionary algorithm (MOEA) for optimal power flow (OPF) solution. The OPF is modeled as a constrained nonlinear optimization problem, non-convex of large-scale, with continuous and discrete variables. The violated inequality constraints are treated as objective function of the problem. This strategy allows attending the physical and operational restrictions without compromise the quality of the found solutions. The developed MOEA is based on the theory of Pareto and employs a diversity-preserving mechanism to overcome the premature convergence of algorithm and local optimal solutions. Fuzzy set theory is employed to extract the best compromises of the Pareto set. Results for the IEEE-30, RTS-96 and IEEE-354 test systems are presents to validate the efficiency of proposed model and solution technique.
Resumo:
The conventional power flow method is considered to be inadequate to obtain the maximum loading point because of the singularity of Jacobian matrix. Continuation methods are efficient tools for solving this kind of problem since different parameterization schemes can be used to avoid such ill-conditioning problems. This paper presents the details of new schemes for the parameterization step of the continuation power flow method. The new parameterization options are based on physical parameters, namely, the total power losses (real and reactive), the power at the slack bus (real or reactive), the reactive power at generation buses, and transmission line power losses (real and reactive). The simulation results obtained with the new approach for the IEEE test systems (14, 30, 57, and 118 buses) are presented and discussed in the companion paper. The results show that the characteristics of the conventional method are not only preserved but also improved.