153 resultados para polymeric nanocapsules
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Local anesthetics are able to induce pain relief since they bind to the sodium channel of excitable membranes, blocking the influx of sodium ions and the propagation of the nervous impulse. Benzocaine (BZC) is a local anesthetic that presents limited application in topical formulations due to its low water-solubility. This study aimed to develop polymeric nanocapsules as a drug delivery system for the local anesthetic benzocaine (BZC). To do so, BZC loaded poly(D,L-lactide-co-glycolide) (PLGA) nanocapsules were prepared using the nanoprecipitation method and were characterized. The factorial experimental design was used to study the influence of four different independent variables oil response to nanocapsules drug loading. The physical characteristics of PLGA nanocapsules were evaluated by analyzing the particle size, the polydispersion index and the zeta potential, using a particle size analyzer. The results of the optimized formulation showed a size distribution with a polydispersity index of 0.12. an average diameter of 123 nm, zeta potential of -33.6 mV and a drug loading of more than 69%. The release profiles showed a significant difference in the release behavior for the pure drug in solution when compared with that containing benzocaine loaded PLGA nanocapsules. Thus, the prepared nonocapsules described here may be of clinical importance in both the processes of stabilization and delivery of benzocaine for pain treatment. (c) 2009 Elsevier B.V. All rights reserved.
Resumo:
The local anesthetic articaine (ATC) is widely used in dentistry; however, its side effects can include paresthesia and nerve injury. Polymeric nanocapsules (PN) can be used as carriers for drugs, and help to reduce undesirable symptoms. The objective of this study was to evaluate the influence of different factors on the average size, polydispersion, and encapsulation efficiency of PN containing ATC. Poly(ε-caprolactone) (PCL) nanocapsules containing ATC were prepared by the oil-in-water emulsion/solvent evaporation method. The final ATC concentration was 2%. The preparation conditions were optimized using a central composite blocked cube-star design to investigate the influence of two variables at five levels, with 22 factorial points (–1 and +1), two replicates of the central point, 2×2 axial points (–1.414 and +1.414), and an orthogonal distribution, resulting in 10 experiments. The factors varied were the PVA concentration and the sonication time. The nanocapsules showed a satisfactory size range, a polydispersivity index less than 0.2, and high encapsulation efficiency. The values of the factors had no significant influence on either average size or polydispersion, although the encapsulation efficiency was significantly influenced by the sonication time. Improved formulations were identified using the central composite design, which revealed that the main consideration in selecting a suitable formulation was the encapsulation efficiency. Two of the formulations showed both high encapsulation efficiency and colloidal characteristics appropriate for the route of administration.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
An amperometric oxygen sensor based on a polymeric nickel-salen (salen = N,N'-ethylene bis(salicylideneiminato)) film coated platinum electrode was developed. The sensor was constructed by electropolymerization of nickel-salen complex at platinum electrode in acetonitrile/tetrabutylammonium perchlorate by cyclic voltammetry. The voltammetric behavior of the sensor was investigated in 0.5 mol L-1 KCl solution in the absence and presence of molecular oxygen. Thus, with the addition of oxygen to the solution, the increase of cathodic peak current (at -0.25 V vs. saturated calomel electrode (SCE)) of the modified electrode was observed. This result shows that the nickel-salen film on electrode surface promotes the reduction of oxygen. The reaction can be brought about electrochemically, where the nickel(II) complex is first reduced to a nickel(I) complex at the electrode surface. The nickel(I) complex then undergoes a catalytic oxidation by the molecular oxygen in solution back to the nickel(II) complex, which can then be electrochemically re-reduced to produce an enhancement of the cathodic current. The Tafel plot analyses have been used to elucidate the kinetics and mechanism of the oxygen reduction. A plot of the cathodic current vs. the dissolved oxygen concentration for chronoamperometry (fixed potential = -0.25 V vs. SCE) at the sensor was linear in the 3.95-9.20 mg L-1 concentration range and the concentration limit was 0.17 mg L-1 O-2. The proposed electrode is useful for the quality control and routine analysis of dissolved oxygen in commercial samples and environmental water. The results obtained for the levels of dissolved oxygen are in agreement with the results obtained with a commercial O-2 sensor. (C) 2012 Elsevier B.V. All rights reserved.