45 resultados para perovskite crystal fuel additive rare earth transition metal oxide
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Rare earth (RE) metals are essentials for the manufacturing of high-technology products. The separation of RE is complex and expensive; biosorption is an alternative to conventional processes. This work focuses on the biosorption of monocomponent and bicomponent solutions of lanthanum(III) and neodymium(III) in fixed-bed columns using Sargassum sp. biomass. The desorption of metals with HCl 0.10 mol L-1 from loaded biomass is also carried out with the objective of increasing the efficiency of metal separation. Simple models have been successfully used to model breakthrough curves (i.e., Thomas, Bohart-Adams, and Yoon-Nelson equations) for the biosorption of monocomponent solutions. From biosorption and desorption experiments in both monocomponent and bicomponent solutions, a slight selectivity of the biomass for Nd(III) over La(III) is observed. The experiments did not find an effective separation of the RE studied, but their results indicate a possible partition between the metals, which is the fundamental condition for separation perspectives. (C) 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2012
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Luminescent spectra of Eu3+-doped sol-gel glasses have been analyzed during the densification process and compared according to the presence or not of aluminum as a codoping ion. A transition temperature from hydrated to dehydroxyled environments has been found different for doped and codoped samples. However, only slight modifications have been displayed from luminescence measurements beyond this transition. To support the experimental analysis, molecular dynamics simulations have been performed to model the doped and codoped glass structures. Despite no evidence of rare earth clustering reduction due to aluminum has been found, the modeled structures have shown that the luminescent ions are mainly located in aluminum-rich domains. The synthesis of both experimental and numerical analyses has lead us to interpret the aluminum effect as responsible for differences in structure of the luminescent sites rather than for an effective dispersion of the rare earth ions. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
We present photoluminescence and decay of photo excited conductivity data for sol-gel SnO(2) thin films doped with rare earth ions Eu(3+) and Er(3+), a material with nanoscopic crystallites. Photoluminescence spectra are obtained under excitation with several monochromatic light sources, such as Kr(+) and Ar(+) lasers, Xe lamp plus a selective monochromator with UV grating, and the fourth harmonic of a Nd: YAG laser (4.65eV), which assures band-to-band transition and energy transfer to the ion located at matrix sites, substitutional to Sn(4+). The luminescence structure is rather different depending on the location of the rare-earth doping, at lattice symmetric sites or segregated at grain boundary layer, where it is placed in asymmetric sites. The decay of photo-excited conductivity also shows different trapping rate depending on the rare-earth concentration. For Er-doped films, above the saturation limit, the evaluated capture energy is higher than for films with concentration below the limit, in good agreement with the different behaviour obtained from luminescence data. For Eu-doped films, the difference between capture energy and grain boundary barrier is not so evident, even though the luminescence spectra are rather distinct.
Resumo:
In this work we report on visible upconversion emission in Er 3+-, and Ho3+-doped PbGeO3-PbF 2-CdF2-based transparent glass ceramics under 980 nm infrared excitation. In erbium-doped vitroceramic samples, blue(410 ran), green(530, and 550 nm) and red(660 nm) emission signals were generated, which were identified as due to the 2H9/2, 2H 11/2, 4S3/2, and 4F9/2 transitions to the 4I15/2 ground-state, respectively. Intense red(650 nm) upconversion emission corresponding to the 5F5 - 5I8 transition and very small blue(490 nm) and green(540 nm) signals assigned to the 5F 2,3 - 5I8 and 4S2, 5F4 - 5I8 transitions, respectively, were observed in the holmium-doped samples. The 540 nm is the dominant upconversion signal in Ho3+-doped vitroceramics under 850 nm excitation. The dependence of the upconversion processes upon pump power and doping concentration are also investigated, and the main routes for the upconversion excitation processes are also identified. The comparison of the upconversion process in transparent glass ceramics and the precursor glass was also examined and the results revealed that the former present higher upconversion efficiencies.
Resumo:
This work evaluated kinetic and adsorption physicochemical models for the biosorption process of lanthanum, neodymium, europium, and gadolinium by Sargassum sp. in batch systems. The results showed: (a) the pseudo-second order kinetic model was the best approximation for the experimental data with the metal adsorption initial velocity parameter in 0.042-0.055 mmol.g -1.min-1 (La < Nd < Gd < Eu); (b) the Langmuir adsorption model presented adequate correlation with maximum metal uptake at 0.60-0.70 mmol g-1 (Eu < La < Gd < Nd) and the metal-biomass affinity parameter showed distinct values (Gd < Nd < Eu < La: 183.1, 192.5, 678.3, and 837.3 L g-1, respectively); and (c) preliminarily, the kinetics and adsorption evaluation did not reveal a well-defined metal selectivity behavior for the RE biosorption in Sargassum sp., but they indicate a possible partition among RE studied. © (2009) Trans Tech Publications.
Resumo:
Photoluminescence and photo-excited conductivity data as well as structural analysis are presented for sol-gel SnO2 thin films doped with rare earth ions Eu3+ and Er3+, deposited by sol-gel-dip-coating technique. Photoluminescence spectra are obtained under excitation with various types of monochromatic light sources, such as Kr+, Ar+ and Nd:YAG lasers, besides a Xe lamp plus a selective monochromator with UV grating. The luminescence fine structure is rather different depending on the location of the rare-earth doping, at lattice symmetric sites or segregated at the asymmetric grain boundary layer sites. The decay of photo-excited conductivity also shows different trapping rate depending on the rare-earth concentration. For Er-doped films, above the saturation limit, the evaluated capture energy is higher than for films with concentration below the limit, in good agreement with the different behaviour obtained from luminescence data. For Eu-doped films, the difference in the capture energy is not so evident in these materials with nanoscocopic crystallites, even though the luminescence spectra are rather distinct. It seems that grain boundary scattering plays a major role in Eu-doped SnO2 films. Structural evaluation helps to interpret the electro-optical data. © 2010 IOP Publishing Ltd.
Resumo:
The multiferroic behavior with ion modification using rare-earth cations on crystal structures, along with the insulating properties of BiFeO3 (BFO) thin films was investigated using piezoresponse force microscopy. Rare-earth-substituted BFO films with chemical compositions of (Bi 1.00-xRExFe1.00O3 (x=0; 0.15), RE=La and Nd were fabricated on Pt (111)/Ti/SiO2/Si substrates using a chemical solution deposition technique. A crystalline phase of tetragonal BFO was obtained by heat treatment in ambient atmosphere at 500 °C for 2 h. Ion modification using La3+ and Nd3+ cations lowered the leakage current density of the BFO films at room temperature from approximately 10-6 down to 10-8 A/cm2. The observed improved magnetism of the Nd3+ substituted BFO thin films can be related to the plate-like morphology in a nanometer scale. We observed that various types of domain behavior such as 71° and 180° domain switching, and pinned domain formation occurred. The maximum magnetoelectric coefficient in the longitudinal direction was close to 12 V/cm Oe. © 2012 Elsevier Ltd and Techna Group S.r.l.
Resumo:
Lithium intercalation into double rare earth chromates was carried out. It was found that the compounds NaxLi1-xLa(CrO4)2 belong to the NaLa(CrO4)2 structural type and may be recommended as fast ionic conductors. At small values of x a third polymorphous modification of LiLa(CrO4)2 can be stabilized. Attempts to intercalate lithium into CsLa(CrO4)2 lead to collapse of the lamellar network with the formation of LaCrO4 and alkaline chromates. Ion exchange Li+/H+ data are consistent with these considerations. © 1994.
Resumo:
A reciclagem agrícola do lodo de esgoto tem provocado o acúmulo de metais pesados no solo e na água, podendo atingir níveis tóxicos e causar danos às plantas cultivadas, aos animais e ao homem, por meio da cadeia trófica. Neste intuito foi desenvolvido o presente experimento, em condições de campo, entre 2000 e 2002, onde foram avaliados os efeitos da aplicação de lodo de esgoto por dois anos, sobre a extração de metais de transição (essenciais e não) pelo extrator DTPA em um Latossolo Vermelho distrófico (LVd) de textura média. As concentrações dos elementos metálicos: Mn, Fe, Cd, Ni, Co, Pb e Cr não foram detectados pelo método da absorção atômica na solução obtida com o extrator DTPA. A aplicação de lodo de esgoto causou inicialmente pequena elevação no pH do solo, posteriormente a diminuição do mesmo, e manteve-se próximo ao original. Foi possível concluir que, com a aplicação consecutiva do lodo, os teores extraíveis de Fe e Mn nas amostras de solos aumentaram gradativamente nos dois anos agrícolas, com as doses do lodo de esgoto aplicado, época de amostragens, e foram superiores ao tratamento testemunha. O extrator apresentou capacidade restrita para avaliação da fitodisponibilidade dos metais pesados decorrentes das baixas concentrações nas amostras de solo.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The material octakis[3-(3-amino- 1,2,4-triazole)propyl]octasilsesquioxane (ATZ-SSQ) was synthesized and its potential was assessed for Cu(II), Ni(II), Co(II), Zn(II) and Fe(III) from their ethanol solutions and compared with related 3-amino-1,2,4-triazole-propyl modified silica gel (ATZ-SG). The adsorption was performed using a batchwise process and both organofunctionalized surfaces showed the ability to adsorb the metal ions from ethanol solution. The Langmuir model allowed to describe the sorption of the metal ions on ATZ-SSQ and ATTZ-SG in a satisfactory way. The equilibrium is reached very quickly Q min) for ATZ-SSQ, indicating that the adsorption sites are well exposed. The maximum metal ion uptake values for Cu(II), Co(II), Zn(II), Ni(II) and Fe(III) were 0.86, 0.09, 0.19, 0.09 and 0.10 mmol g(-1), respectively, for the ATZ-SSQ, which were higher than the corresponding values 0.21, 0.04, 0.14, 0.05 and 0.07 mmol g(-1) achieved with the ATZ-SG. In order to obtain more information on the metal-ligand interaction of the complexes on the surface of the ATZ-SSQ, Cu(II) was used as a probe to determine the arrangements of the ligands around the central metal ion by electron spin resonance (ESR). The ATZ-SSQ was used for the separation and determination (in flow using a column technique) of the metal ions present in commercial ethanol. (c) 2008 Elsevier B.V. All rights reserved.