137 resultados para nonlinear dynamics
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
In this work, we analyzed a bifurcational behavior of a longitudinal flight nonlinear dynamics, taking as an example the F-8 aircraft Crusader. We deal with an analysis of high angles of attack in order to stabilize the oscillations; those were close to the critical angle of the aircraft, in the flight conditions, established. We proposed a linear optimal control design applied to the considered nonlinear aircraft model below angle of stall, taking into account regions of Hopf and saddled noddle bifurcations.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this paper, a loads transportation system in platforms or suspended by cables is considered. It is a monorail device and is modeled as an inverted pendulum built on a car driven by a dc motor the governing equations of motion were derived via Lagrange's equations. In the mathematical model we consider the interaction between the dc motor and the dynamical system, that is, we have a so called nonideal periodic problem. The problem is analyzed, qualitatively, through the comparison of the stability diagrams, numerically obtained, for several motor torque constants. Furthermore, we also analyze the problem quantitatively using the Floquet multipliers technique. Finally, we devise a control for the studied nonideal problem. The method that was used for analysis and control of this nonideal periodic system is based on the Chebyshev polynomial exponsion, the Picard iterative method, and the Lyapunov-Floquet transformation (L-F transformation). We call it Sinha's theory.
Resumo:
The nonlinear dynamic response and a nonlinear control method of a particular portal frame foundation for an unbalanced rotating machine with limited power (non-ideal motor) are examined. Numerical simulations are performed for a set of control parameters (depending on the voltage of the motor) related to the static and dynamic characteristics of the motor. The interaction of the structure with the excitation source may lead to the occurrence of interesting phenomena during the forward passage through the several resonance states of the systems. A mathematical model having two degrees of freedom simplifies the non-ideal system. The study of controlling steady-state vibrations of the non-ideal system is based on the saturation phenomenon due to internal resonance.
Resumo:
We establish a Green-Nagdhi model equation for capillary-gravity waves in (2+1) dimensions. Through the derivation of an asymptotic equation governing short-wave dynamics, we show that this system possesses (1 + 1) traveling-wave solutions for almost all the values of the Bond number θ (the special case θ=1/3 is not studied). These waves become singular when their amplitude is larger than a threshold value, related to the velocity of the wave. The limit angle at the crest is then calculated. The stability of a wave train is also studied via a Benjamin-Feir modulational analysis. ©2005 The American Physical Society.
Resumo:
We investigate the nonlinear oscillations in a free surface of a fluid in a cylinder tank excited by non-ideal power source, an electric motor with limited power supply. We study the possibility of parametric resonance in this system, showing that the excitation mechanism can generate chaotic response. Additionally, the dynamics of parametrically excited surface waves in the tank can reveal new characteristics of the system. The fluid-dynamic system is modeled in such way as to obtain a nonlinear differential equation system. Numerical experiments are carried out to find the regions of chaotic solutions. Simulation results are presented as phase-portrait diagrams characterizing the resonant vibrations of free fluid surface and the existence of several types of regular and chaotic attractors. We also describe the energy transfer in the interaction process between the hydrodynamic system and the electric motor. Copyright © 2011 by ASME.
Resumo:
This paper presents a nonlinear dynamic analysis of a flexible portal frame subjected to support excitation, which is provided by an electro-dynamical shaker. The problem is reduced to a mathematical model of four degrees of freedom and the equations of motion are derived via Lagrangian formulation. The main goal of this study is to investigate the dynamic interactions between a flexible portal frame and a non-ideal support excitation. The numerical analysis shows a complex behavior of the system, which can be observed by phase spaces, Poincaŕ sections and bifurcation diagrams. © 2012 American Institute of Physics.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In this paper, we deal with the research of a vibrating model of an energy harvester device, including the nonlinearities in the model of the piezoelectric coupling and the non-ideal excitation. We show, using numerical simulations, in the analysis of the dynamic responses, that the harvested power is influenced by non-linear vibrations of the structure. Chaotic behavior was also observed, causing of the loss of energy throughout the simulation time. Using a perturbation technique, we find an approximate analytical solution for the non-ideal system. Then, we apply both two control techniques, to keep the considered system, into a stable condition. Both the State Dependent Ricatti Equation (SDRE) control as the feedback control by changing the energy of the oscillator, were efficient in controlling of the considered non-ideal system.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We analyze new results on a magnetically levitated body (a block including a magnet whose bottom pole is set in such a way as to repel the upper pole of a magnetic base) excited by a non-ideal energy source (an unbalanced electric motor of limited power supply). These new results are related to the jump phenomena and increase of power required of such sources near resonance are manifestations of a non-ideal system and they are referred as the Sommerfeld effect, which emulates an energy sink. In this work, we also discuss control strategies to be applied to this system, in resonance conditions, in order to decrease its vibration amplitude and avoiding this apparent energy sink.
Resumo:
This study focuses on analysing the effects of nonlinear torsional stiffness on the dynam-ics of a slender elastic beam under torsional oscillations, which can be subject to helical buckling.The helical buckling of an elastic beam confined in a cylinder is relevant to many applications. Someexamples include oil drilling, medical cateters and even the conformation and functioning of DNAmolecules. A recent study showed that the formation of the helical configuration is a result of onlythe torsional load, confirming that there is a different path to helical buckling which is not related tothe sinusoidal buckling, stressing the importance of the geometrical behaviour of the beam. A lowdimensional model of an elastic beam under torsional oscillations is used to analyse its dynamical be-haviour with different stiffness characteristics, which are present before and after the helical buckling.Hardening and softening characteristics are present, as the effects of torsion and bending are coupled.With the use of numerical algorithms applied to nonlinear dynamics, such as bifurcation diagramsand basins of attraction, it is shown that the nonlinear stiffness can shift the bifurcations and inducechanges in the stability of the desirable and undesirable solutions. Therefore, the proper modellingof these stiffness nonlinearities seems to be important for a better understanding of the dynamicalbehaviour of such beams.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)