144 resultados para nitric oxide donor

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The syntheses and properties of trans-[Ru(NH3) 4(L)(NO)](BF4)3 (L = isonicotinic acid (inaH) (I) or ina-Tat48-60 (II)) are described. Tat48-60, a cell penetrating peptide fragment of the Tat regulatory protein of the HIV virus, was linked to the ruthenium nitrosyl through inaH. I and II release NO after reduction forming trans-[Ru(NH3)4(L)(H2O)]3 +. The IC50 values against B16-F10 melanoma cells of I and II (21 μmol L- 1 and 23 μmol L- 1, respectively) are close to that of the commercially available cisplatin (33 μmol L- 1) and smaller than similar complexes. The cytotoxicity is assigned to the NO released from I and II. © 2012 Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Male Holtzman rats weighting 200-250 g were anesthetized with zoletil 50 mg/Kg (tiletamine chloridrate 125.0 mg and zolazepan chloridrate 125.0 mg) into quadriceps muscle and stainless steel cannulas were implanted into their supraoptic nucleus (SON). We investigated the effects of the injection into the supraoptic nucleus (SON) of FK 409, a nitric oxide donor, and N(W-)nitro-L-arginine methyl ester (L-NAME), a nitric oxide synthase inhibitor (NOS), on the salivary secretion, arterial blood pressure, sodium excretion and urinary volume induced by pilocarpine, which was injected into SON. The drugs were injected in 0.5 mul volume over 30-60 s. Controls was injected with a similar volume of 0.15 M NaCl. FK 409 and L-NAME were injected at doses of 20 mug/0.5 mul and 40 mug/0.5 mul. respectively. The amount of saliva secretion was studied over a five-minute period after injection of pilocarpine into SON. Injection of pilocarpine (10, 20, 40, 80, 160 mug/mul) into SON produced a dose-dependent increase in salivary secretion. L-NAME was injected into SON prior to the injection of pilocarpine into SON, producing an increase in salivary secretion due to the effect of pilocarpine. FK 409 injected into SON attenuating the increase in salivary secretion induced by pilocarpine. Mean arterial pressure (MAP) increase after injections of pilocarpine into the SON. L-NAME injected into the SON prior to injection of pilocarpine into SON increased the MAP. FK 409 injected into the SON prior to pilocarpine attenuated the effect of pilocarpine on MAP. Pilocarpine (0.5 mumol/0.5 mul) injected into the SON induced an increase in sodium and urinary excretion. L-NAME injected prior to pilocarpine into the SON increased the urinary sodium excretion and urinary volume induced by pilocarpine. FK 409 injected prior to pilocarpine into the SON decreased the sodium excretion and urinary volume induced by pilocarpine. All these roles of pilocarpine depend on the release of nitric oxide into the SON. In summary the present results show: a) SON is involved in pilocarpine-induced salivation; b) that mechanism involves increase in MAP, sodium excretion and urinary volume. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the voltage dependent calcium channels and nitric oxide involvement in angiotensin II-induced pressor effect. The antipressor action of L-Type calcium channel antagonist, nifedipine, has been studied when it was injected into the third ventricle prior to angiotensin II. The influence of nitric oxide on nifedipine antipressor action has also been studied by utilizing N(W)-nitro-L-arginine methyl ester (LNAME) (40 mu g/0.2 mu l) a nitric oxide synthase inhibitor and L-arginine ( 20 mu g/0.2 mu l), a nitric oxide donor agent. Adult male Holtzman rats weighting 200-250 g, with cannulae implanted into the third ventricle were injected with angiotensin II. Angiotensin II produced an elevation in mean arterial pressure and a decreased in heart rate. Such effects were potentiated by the prior injection of LNAME. L-arginine and nifedipine blocked the effects of angiotensin II. These data showed the involvement of L-Type calcium channel and a free radical gas nitric oxide in the central control of angiotensin II-induced pressor effect. This suggested that L-Type calcium channel of the circunventricular structures of central nervous system participated in both short and long term neuronal actions of ANG II with the influence of nitrergic system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The roles that nitric oxide (NO) plays in the cardiovascular system of reptiles are reviewed, with particular emphasis on its effects on central vascular blood flows in the systemic and pulmonary circulations. New data is presented that describes the effects on hemodynamic variables in varanid lizards of exogenously administered NO via the nitric oxide donor sodium nitroprusside (SNP) and, preliminary data on the effects of SNP inhibition of nitric oxide synthase (NOS) by L-nitroarginine methyl ester (L-NAME). Furthermore. on hemodynamic variables in the tegu lizard are presented. The findings are compared with previously published data from Our laboratory on three other species of reptiles: pythons (Skovgaard, N., Galli, G., Taylor, E.W., Conlon, J.M., Wang.. T., 2005. Hemodynamic effects of python neuropeptide gamma in the anesthetized python, Python regius. Regul. Pept. 18, 15-26), rattlesnakes (Galli, G., Skovgaard, N., Abe, A.S., Taylor, E.W., Wang, T., 2005. The role of nitric oxide in the regulation of the systemic and the pulmonary vasculature of the rattlesnake, Crotalus durissus terrificus. J. Comp. Physiol. 175B, 201-208) and turtles (Crossley, D.A., Wang, T., Altimiras, J., 2000. Role of nitric oxide in the systemic and pulmonary circulation of anesthetized turtles (Trachemys scripta). J. Exp. Zool. 286, 683-689). These five species of reptiles possess different combinations of division of the heart and structural complexity of the lungs. Comparison of their responses to NO donors and NOS inhibitors may reveal whether the potential contribution of NO to vascular tone correlates with pulmonary complexity and/or with blood pressure. All existing studies oil reptiles have clearly established a potential role for NO in regulating vascular tone in the systemic circulation and NO may be important for maintaining basal systemic vascular tone in varanid lizards, pythons and turtles, through a continuous release of NO. In contrast., the pulmonary circulation is less responsive to NO donors or NOS inhibitors, and it was only in pythons and varanid lizards that the lungs responded to SNP. Both species have a functionally separated heart, so it is possible that NO may exert a larger role in species with low pulmonary blood pressures, irrespective of lung complexity. (C) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The circumventricular structures of the central nervous system and nitric oxide are involved in arterial blood pressure control, and general anesthesia may stimulate the central renin-angiotensin system. We therefore investigated the central role of angiotensin 11 and nitric oxide on the regulation of systemic arterial blood pressure in conscious and anesthetized rats. METHODS: Rats with stainless steel cannulae implanted into their lateral ventricle were studied. We injected the AT(1) and AT(2) angiotensin 11 receptor antagonists, losartan and PD123319, L-NAME, 7-nitroindazole (nitric oxide synthetase inhibitors), and FK409 (nitric oxide donor agent) into the lateral ventricles. Mean arterial blood pressure (MAP) was recorded in conscious and zoletil-anesthetized rats. RESULTS: Mean +/- (SEM) baseline MAP was 117.5 +/- 2 mm Hg. Angiotensin II injected into the brain lateral ventricle increased MAP from 136.5 +/- 2 min Hg to 138.5 +/- 4 mm Hg (Delta 16 +/- 3 mm Hg to Delta 21 +/- 3 mm Hg) for all experimental groups versus control from 116 +/- 2 mm Hg to 120 +/- 3 mm Hg (Delta 3 +/- 1 mm Hg to A5 +/- 2 mm Hg) (P < 0.05). L-NAME or 7-nitroindazole enhanced the angiotensin II pressor effect (P < 0.05). Prior injection of losartan and PD123319 decreased the angiotensin 11 pressor effect and the enhancement effect of L-NAME and 7-nitroindazole (P < 0.05). Zoletil anesthesia did not interfere with the effects of angiotensin 11, AT,, AT2 antagonists, or nitric oxide synthetase inhibitors. CONCLUSIONS: Endogenous nitric oxide functions tonically as a central inhibitory modulator of the angiotensinergic system. AT, and AT2 receptors influence the angiotensin 11 central control of arterial blood pressure. Zoletil anesthesia did not interfere with these effects. (Anesth Analg 2007;105:1293-7)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study investigated the central role of angiotensin II and nitric oxide on arterial blood pressure (MAP) in rats. Losartan and PD123349 AT 1 and AT 2 (selective no peptides antagonists angiotensin receptors), as well as FK 409 (a nitric oxide donor), N W-nitro-L-arginine methyl ester (L-NAME) a constituve nitric oxide synthase inhibitor endothelial (eNOSI) and 7-nitroindazol (7NI) a specific neuronal nitric oxide synthase inhibitor (nNOSI) were used. Holtzman strain, (Rattus norvergicus) weighting 200-250 g were anesthetized with zoletil 50 mg kg -1 (tiletamine chloridrate 125 mg and zolazepan chloridrate 125 mg) into quadriceps muscle anda stainless steel cannula was stereotaxically implanted into their Lateral Ventricle (LV). Controls were injected with a 0.5 μl volume of 0.15 M NaCl. Angiotensin II injected into LV increased MAP (19±3 vs. control 3±1 mm Hg), which is potentiated by prior injection of L-NAME in the same site 26±2 mm Hg. 7NI injected prior to ANG II into LV also potentiated the pressor effect of ANG II but with a higher intensity than L-NAME 32±3 mm Hg. FK 409 inhibited the pressor effect of ANG II (6±1 mm Hg). Losartan injected into LV before ANG II influences the pressor effect of ANG II (8±1 mm Hg). The PD 123319 decreased the pressor effects of ANG II (16±1 mm Hg). Losartan injected simultaneously with FK 409 blocked the pressor effect of ANG II (3±1 mm Hg). L-NAME produced an increase in the pressor effect of ANG II, may be due to local vasoconstriction and all at once by neuronal NOS inhibition but the main effect is of the 7-NIT an specific nNOS inhibitor. The AT 1 antagonist receptors improve basal nitric oxide (NO) production and release. These data suggest the involvement of constitutive and neuronal NOS in the control of arterial blood pressure induced by ANG II centrally, evolving AT 1 receptor-mediated vasoconstriction and AT 2 receptor-mediated vasodilatation. These results were confirmed by the experiment using FK 409. © 2006 Asian Network for Scientific Information.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to examine the role of nifedipine and Nitric Oxide (NO) on salivary flow and compounds (salivary amylase, saliva total proteins, saliva calcium, sodium and potassium). Male Holtzman rats weighting 200-250 g were anesthetized with zoletil 50 mg kg -1 (tiletamine chloridrate 125.0 mg and zolazepan chloridrate 125.0 mg) into quadriceps muscle and stainless steel cannulas were implanted into their lateral ventricle of the brain (LV). Animals in divided group were injected with nifedipine (50 μg μL -1) alone and in combination with 7-nitroindazol (7-NIT) (40 μg μL -1), neuronal NO Sinthase Inhibitor (nNOSI) and Sodium Nitroprussate (SNP) (30 μg μL -1) NO donor agent. As a secretory stimuli, pilocarpine dissolved in isotonic was administered intraperitoneally (ip) at a dosage of 10 mg kg -1 body weight. Saliva was collected for 7 min with four cotton balls weighing approximately 20 mg each, two of which were placed on either side of the oral cavity, with the other two placed under the tongue. Nifedipine treatment induced a reduction in saliva secretion rate and concentration of amylase, total protein and calcium without changes in sodium and potassium concentration in comparison with controls. Co-treatment of animals with nifedipine and SNP retained flow rate and concentration of amylase, total protein and calcium in normal levels. Co-treatment of animals with nifedipine and 7-NIT potentiated the effect of nifedipine on the reduction of saliva secretion and concentrations of amylase, total protein and calcium. Nifedipine (dihydroperidine) calcium-channel blocker widely in use is associated with salivary dysfunction acting in the central nervous system structures. NO might be the mechanism for protective effect against the nifedipine-induce salivary dysfunction, acting in the CNS. © 2006 Asian Network for Scientific Information.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We determined the effects of AT 1 and AT 2 (selective no peptides antagonists angiotensin receptors), arginine vasopressin V 1 receptor antagonist as well as L-arginine, a nitric oxide donor and N W-nitro-L-arginine methyl ester (L-NAME), a nitric oxide synthase inhibitor, injected into supraoptic nucleus (SON) on water and sodium intake induced by the injection of angiotensin II (ANGII). Male Holtzman rats weighing 200-250 g with canulae implanted into the SON were used. The drugs were injected in 0.5 μL over 30-60 sec. The water intake after injection of saline SAL+SAL 0.15 M NaCl was 0.40±0.1 mL 2 h -1; SAL+ANGII increase water intake. Losartan decreased the water intake induced by ANGII. PD123319 injected prior to produce no change in water intake induced by ANGII. AVPA prior to ANGII reduced the water intake with a less intensity than losartan. L-arginine prior to ANGII decreases the water intake at a same intensity than losartan. L-NAME prior to ANGII potentiated the dipsogenic effect of ANGII. Losartan injected simultaneously with L-arginine prior to ANGII blocked the dipsogenic effect of ANGII. These results confirm the importance of SON in the control of water intake and strongly suggest that AT 1, V 1 receptors interact with nitrergic pathways within the SON influencing the dipsogenic effect of ANGII.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The functional role of nitric oxide (NO) was investigated in the systemic and pulmonary circulations of the South American rattlesnake, Crotalus durissus terrificus. Bolus, intra-arterial injections of the NO donor, sodium nitroprusside (SNP) caused a significant systemic vasodilatation resulting in a reduction in systemic resistance (Rsys). This response was accompanied by a significant decrease in systemic pressure and a rise in systemic blood flow. Pulmonary resistance (Rpul) remained constant while pulmonary pressure (Ppul) and pulmonary blood flow (Qpul) decreased. Injection of L-Arginine (L-Arg) produced a similar response to SNP in the systemic circulation, inducing an immediate systemic vasodilatation, while Rpul was unaffected. Blockade of NO synthesis via the nitric oxide synthase inhibitor, L-NAME, did not affect haemodynamic variables in the systemic circulation, indicating a small contribution of NO to the basal regulation of systemic vascular resistance. Similarly, Rpul and Qpul remained unchanged, although there was a significant rise in Ppul. Via injection of SNP, this study clearly demonstrates that NO causes a systemic vasodilatation in the rattlesnake, indicating that NO may contribute in the regulation of systemic vascular resistance. In contrast, the pulmonary vasculature seems far less responsive to NO.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O lactofen é um herbicida difeniléter recomendado para controlar plantas daninhas de folhas largas em campos de soja (Glycine max) e seu mecanismo de ação é a inibição da protoporfirinogênio-IX oxidase (Protox), que atua na biossíntese de clorofilas. Essa inibição resulta em um acúmulo de protoporfirina-IX, o que leva à produção de espécies reativas de oxigênio (ROS), causando estresse oxidativo. Conseqüentemente, podem ocorrer manchas, enrugamento e queima das folhas, o que leva à paralisação temporária do crescimento da cultura. Porém, o óxido nítrico (NO) atua como um antioxidante na eliminação direta das ROS. Assim, o objetivo deste trabalho foi verificar, por meio de avaliações fitométricas e bioquímicas, o efeito protetor do NO em plantas de soja tratadas com o herbicida lactofen. Plantas de soja foram pré-tratadas com diferentes doses de Nitroprussiato de Sódio (SNP), substância doadora de NO, e então pulverizadas com 168 g a.i. ha-1 lactofen. O pré-tratamento com SNP foi benéfico, pois o NO reduziu os sintomas de injúria causados pelo lactofen nos folíolos jovens e manteve baixos teores de açúcares solúveis. Porém, o NO proporcionou crescimento mais lento das plantas. Desta forma, posteriores estudos são necessários para elucidar os mecanismos de ação do NO na sinalização do estresse promovido pelo lactofen na cultura da soja.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Drought is one of the main environmental constraints that can reduce plant yield. Nitric oxide (NO) is a signal molecule involved in plant responses to several environmental stresses. The objective of this study was to investigate the cytoprotective effect of a single foliar application of 0, 1, 10 or 100 µM of the NO donor sodium nitroprusside (SNP) in sunflower plants under water stress. Water stressed plants treated with 1μM SNP showed an increase in the relative water content compared with 0 μM SNP. Drought reduced the shoot dry weight but SNP applications did not result in alleviation of drought effects. Neither drought nor water stress plus SNP applications altered the content of photosynthetic pigments. Stomatal conductance was reduced by drought and this reduction was accompanied by a significant reduction in intercellular CO2 concentration and photosynthesis. Treatment with SNP did not reverse the effect of drought on the gas exchange characteristics. Drought increased the level of malondialdehyde (MDA) and proline and reduced pirogalol peroxidase (PG-POD) activity, but did not affect the activity of superoxide dismutase (SOD). When the water stressed plants were treated with 10 μM SNP, the activity of PG-POD and the content of proline were increased and the level of MDA was decreased. The results show that the adverse effects of water stress on sunflower plants are dependent on the external NO concentration. The action of NO may be explained by its ability to increase the levels of antioxidant compounds and the activity of ROS-scavenging enzymes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The fact that drugs currently used in the treatment of Leishmania are highly toxic and associated with acquired resistance has promoted the search for new therapies for treating American tegumentary leishmaniasis (ATL). In this study, BALB/c mice were injected in the hind paw with Leishmania (Leishmania) amazonensis and subsequently treated with a combination of nitric oxide (NO) donor (cis-[Ru(bpy)(2)imN(NO)](PF6)(3)) (Ru-NO), given by intraperitoneal injection, and oral Brazilian propolis for 30 days. Ru-NO reached the center of the lesion and increased the NO level in the injured hind paw without lesion exacerbation. Histological and immunological parameters of chronic inflammation showed that this combined treatment increased the efficacy of macrophages, determined by the decrease in the number of parasitized cells, leading to reduced expression of proinflammatory and tissue damage markers. In addition, these drugs in combination fostered wound healing, enhanced the number of fibroblasts, pro-healing cytokines and induced collagen synthesis at the lesion site. Overall, our findings suggest that the combination of the NO donor Ru-NO and Brazilian propolis alleviates experimental ATL lesions, highlighting a new therapeutic option that can be considered for further in vivo investigations as a candidate for the treatment of cutaneous leishmaniasis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)