58 resultados para mitogen activated protein kinase 1
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Actinobacillus actinomycetemcomitans plays a major role in the pathogenesis of aggressive periodontitis. Lipopolysaccharide (LPS) derived from A. actinomycetemcomitans is a key factor in inflammatory cytokine generation within periodontal tissues. In this study, we identify major mitogen-activated protein kinase (MAPK) signaling pathways induced by A. actinomycetemcomitans LPS, Escherichia coli LPS and interleukin-1 beta (IL-1 beta) in a murine periodontal ligament (mPDL) fibroblast cell line. Immunoblot analysis was used to assess the phosphorylated forms of p38, extracellular-regulated kinase (ERK) and c-jun N-terminal kinase (JNK) MAPK following stimulation with A. actinomycetemcomitans LPS, E. coli LPS and IL-1 beta. IL-6 mRNA induction was detected via reverse transcription-polymerase chain reaction, while protein levels were quantified via enzyme-linked immunosorbent assays (ELISA). We utilized biochemical inhibitors of p38, ERK and JNK MAPK to identify the MAPK signaling pathways needed for IL-6 expression. Additional use of stable mPDL cell lines containing dominant negative mutant constructs of MAPK kinase-3 and -6 (MKK-3/6) and p38 null mutant mouse embryonic fibroblast (MEF) cells were used to substantiate the biochemical inhibitor data. Blocking p38 MAPK with SB203580 reduced the induction of IL-6 mRNA by A. actinomycetemcomitans LPS, E. coli LPS and IL-1 beta by > 70%, > 95% and similar to 60%, respectively. IL-6 ELISA indicated that blocking p38 MAPK reduced the IL-6 protein levels induced by A. actinomycetemcomitans LPS, E. coli LPS and IL-1 beta by similar to 60%, similar to 50% and similar to 70%, respectively. All MAPK inhibitors significantly reduced the IL-6 protein levels induced by A. actinomycetemcomitans LPS, E. coli LPS and IL-1 beta whereas only p38 inhibitors consistently reduced the A. actinomycetemcomitans LPS, E. coli LPS and IL-1 beta induction of IL-6 mRNA steady-state levels. The contribution of p38 MAPK LPS-induced IL-6 expression was confirmed using MKK-3/6 dominant negative stable mPDL cell lines. Wild-type and p38 alpha(-/-) MEF cells provided additional evidence to support the role of p38 alpha MAPK in A. actinomycetemcomitans LPS-stimulated IL-6. Our results indicate that induction of IL-6 by E. coli LPS, IL-1 beta and A. actinomycetemcomitans LPS requires signaling through MKK-3-p38 alpha ERK, JNK and p38 MAPK in mPDL cells.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Background and Objective: Lipopolysaccharide from gram-negative bacteria is one of the microbial-associated molecular patterns that initiate the immune/inflammatory response, leading to the tissue destruction observed in periodontitis. The aim of this study was to evaluate the role of the p38 mitogen-activated protein kinase (MAPK) signaling pathway in lipopolysaccharide-induced receptor activator of nuclear factor-kappa B ligand (RANKL) expression by murine periodontal ligament cells.Material and Methods: Expression of RANKL and osteoprotegerin mRNA was studied by reverse transcription-polymerase chain reaction upon stimulation with lipopolysaccharide from Escherichia coli and Aggregatibacter actinomycetemcomitans. The biochemical inhibitor SB203580 was used to evaluate the contribution of the p38 MAPK signaling pathway to lipopolysaccharide-induced RANKL and osteoprotegerin expression. Stable cell lines expressing dominant-negative forms of MAPK kinase (MKK)-3 and MKK6 were generated to confirm the role of the p38 MAPK pathway. An osteoclastogenesis assay using a coculture model of the murine monocytic cell line RAW 264.7 was used to determine if osteoclast differentiation induced by lipopolysaccharide-stimulated periodontal ligament was correlated with RANKL expression.Results: Inhibiting p38 MAPK prior to lipopolysaccharide stimulation resulted in a significant decrease of RANKL mRNA expression. Osteoprotegerin mRNA expression was not affected by lipopolysaccharide or p38 MAPK. Lipopolysaccharide-stimulated periodontal ligament cells increased osteoclast differentiation, an effect that was completely blocked by osteoprotegerin and significantly decreased by inhibition of MKK3 and MKK6, upstream activators of p38 MAPK. Conditioned medium from murine periodontal ligament cultures did not increase osteoclast differentiation, indicating that periodontal ligament cells produced membrane-bound RANKL.Conclusion: Lipopolysaccharide resulted in a significant increase of RANKL in periodontal ligament cells. The p38 MAPK pathway is required for lipopolysaccharide-induced membrane-bound RANKL expression in these cells.
Silencing mitogen-activated protein kinase-activated protein kinase-2 arrests inflammatory bone loss
Resumo:
p38 mitogen-activated protein kinases (MAPKs) are critical for innate immune signaling and subsequent cytokine expression in periodontal inflammation and bone destruction. In fact, previous studies show that systemic p38 MAPK inhibitors block periodontal disease progression. However, development of p38 MAPK inhibitors with favorable toxicological profiles is difficult. Here, we report our findings regarding the contribution of the downstream p38 MAPK substrate, mitogen-activated protein kinase-activated protein kinase 2 (MK2 or MAPKAPK-2), in immune response modulation in an experimental model of pathogen-derived lipopolysaccharide (LPS)-induced periodontal bone loss. To determine whether small interfering RNA (siRNA) technology has intraoral applications, we initially validated MK2 siRNA specificity. Then, gingival tissue surrounding maxillary molars of rats was injected with MK2 siRNA or scrambled siRNA at the palatal regions of bone loss. Intraoral tissues treated with MK2 siRNA had significantly less MK2 mRNA expression compared with scrambled siRNA-treated tissues. MK2 siRNA delivery arrested LPS-induced inflammatory bone loss, decreased inflammatory infiltrate, and decreased osteoclastogenesis. This proof-of-concept study suggests a novel target using an intraoral RNA interference strategy to control periodontal inflammation.
Resumo:
The PKC1 gene in the yeast Saccharomyces cerevisiae encodes protein kinase C that is known to control a mitogen-activated protein (MAP) kinase cascade consisting of Bck1, Mkk1 and Mkk2, and Mpk1. This cascade affects the cell wall integrity but the phenotype of Pkc1 mutants suggests additional targets which have not yet been identified. We show that a pkc1Δ mutant, as opposed to mutants in the MAP kinase cascade, displays two major defects in the control of carbon metabolism. It shows a delay in the initiation of fermentation upon addition of glucose and a defect in derepression of SUC2 gene after exhaustion of glucose from the medium. After addition of glucose the production of both ethanol and glycerol started very slowly. The V max of glucose transport dropped considerably and Northern blot analysis showed that induction of the HXT1, HXT2 and HXT4 genes was strongly reduced. Growth of the pkc1Δ mutant was absent on glycerol and poor on galactose and raffinose. Oxygen uptake was barely present. Derepression of invertase activity and SUC2 transcription upon transfer of cells from glucose to raffinose was deficient in the pkc1Δ mutant as opposed to the wild-type. Our results suggest an involvement of Pkc1p in the control of carbon metabolism which is not shared by the downstream MAP kinase cascade. © 2002 Federation of European Microbiological Societies. Published by Elsevier Science B.V. All rights reserved.
Resumo:
Coronary heart disease (CHD) is the most common cause of death in many developed countries. The major risk factors for CHD are smoking, high blood pressure, diabetes, high cholesterol levels, and lack of physical activity. Importantly, passive smoke also increases the risk for CHD. The mechanisms involved in the effects of passive smoke in CHD are complex and include endothelial dysfunction, lipoprotein modification, increased inflammation and platelet activation. Recently, several studies have shown that exposure to tobacco smoke can result in cardiac remodeling and compromised cardiac function. Potential mechanisms for these alterations are neurohumoral activation, oxidative stress, and MAPK activation. Although the vascular effects of cigarette smoke exposure are well known, the effects of tobacco smoking on the heart have received less attention. Therefore, this review will focus on the recent findings as to the effects of passive smoking in acute and chronic phases of vascular and cardiac remodeling. © 2009 Bentham Science Publishers Ltd.
Resumo:
Ethnopharmacological relevance Propolis is a bee product with numerous biological and pharmacological properties, such as immunomodulatory and anti-inflammatory activities. It has been used in folk medicine as a healthy drink and in food to improve health and prevent inflammatory diseases. However, little is known about its mechanism of action. Thus, the goal of this study was to verify the antioxidant activity and to explore the anti-inflammatory properties of propolis by addressing its intracellular mechanism of action. Caffeic acid was investigated as a possible compound responsible for propolis action. Materials and methods The antioxidant properties of propolis and caffeic acid were evaluated by using the 2,2-Diphenyl-1-picrylhydrazyl free radical (DPPH) scavenging method. To analyze the anti-inflammatory activity, Raw 264.7 macrophages were treated with different concentrations of propolis or caffeic acid, and nitric oxide (NO) production, a strong pro-inflammatory mediator, was evaluated by the Griess reaction. The concentrations of propolis and caffeic acid that inhibited NO production were evaluated on intracellular signaling pathways triggered during inflammation, namely p38 mitogen-activated protein kinase (MAPK), c-jun NH2-terminal kinase (JNK1/2), the transcription nuclear factor (NF)-κB and extracellular signal-regulated kinase (ERK1/2), through Western blot using specific antibodies. A possible effect of propolis on the cytotoxicity of hepatocytes was also evaluated, since this product can be used in human diets. Results Caffeic acid showed a higher antioxidant activity than propolis extract. Propolis and caffeic acid inhibited NO production in macrophages, at concentrations without cytotoxicity. Furthermore, both propolis and caffeic acid suppressed LPS-induced signaling pathways, namely p38 MAPK, JNK1/2 and NF-κB. ERK1/2 was not affected by propolis extract and caffeic acid. In addition, propolis and caffeic acid did not induce hepatotoxicity at concentrations with strong anti-inflammatory potential. Conclusions Propolis exerted an antioxidant and anti-inflammatory action and caffeic acid may be involved in its inhibitory effects on NO production and intracellular signaling cascades, suggesting its use as a natural source of safe anti-inflammatory drugs. © 2013 Elsevier B.V.
Resumo:
Mammalian natriuretic peptides (NPs) have been extensively investigated for use as therapeutic agents in the treatment of cardiovascular diseases. Here, we describe the isolation, sequencing and tridimensional homology modeling of the first C-type natriuretic peptide isolated from scorpion venom. In addition, its effects on the renal function of rats and on the mRNA expression of natriuretic peptide receptors in the kidneys are delineated. Fractionation of Tityusserrulatus venom using chromatographic techniques yielded a peptide with a molecular mass of 2190.64Da, which exhibited the pattern of disulfide bridges that is characteristic of a C-type NP (TsNP, T. serrulatus Natriuretic Peptide). In the isolated perfused rat kidney assay, treatment with two concentrations of TsNP (0.03 and 0.1μg/mL) increased the perfusion pressure, glomerular filtration rate and urinary flow. After 60min of treatment at both concentrations, the percentages of sodium, potassium and chloride transport were decreased, and the urinary cGMP concentration was elevated. Natriuretic peptide receptor-A (NPR-A) mRNA expression was down regulated in the kidneys treated with both concentrations of TsNP, whereas NPR-B, NPR-C and CG-C mRNAs were up regulated at the 0.1μg/mL concentration. In conclusion, this work describes the isolation and modeling of the first natriuretic peptide isolated from scorpion venom. In addition, examinations of the renal actions of TsNP indicate that its effects may be related to the activation of NPR-B, NPR-C and GC-C. © 2013 Elsevier Ltd.
Resumo:
Osteoblast-derived IL-6 functions in coupled bone turnover by supporting osteoclastogenesis favoring bone resorption instead of bone deposition. Gene regulation of IL-6 is complex occurring both at transcription and post-transcription levels. The focus of this paper is at the level of mRNA stability, which is important in IL-6 gene regulation. Using the MC3T3-E1 as an osteoblastic model, IL-6 secretion was dose dependently decreased by SB203580, a p38 MAPK inhibitor. Steady state IL-6 mRNA was decreased with SB203580 (2 μM) ca. 85% when stimulated by IL-1β (1-5 ng/ ml). These effects require de novo protein synthesis as they were inhibited by cycloheximide. p38 MAPK had minor effects on proximal IL-6 promoter activity in reporter gene assays. A more significant effect on IL-6 mRNA stability was observed in the presence of SB203580. Western blot analysis confirmed that SB203580 inhibited p38 MAP kinase, in response to IL-1β in a dose dependent manner in MC3T3-E1 cells. Stably transfected MC3T3-E1 reporter cell lines (MC6) containing green fluorescent protein (GFP) with the 3′untranslated region of IL-6 were constructed. Results indicated that IL-1β, TNFα, LPS but not parathyroid hormone (PTH) could increase GFP expression of these reporter cell lines. Endogenous IL-6 and reporter gene eGFP-IL-6 3′UTR mRNA was regulated by p38 in MC6 cells. In addition, transient transfection of IL-6 3′UTR reporter cells with immediate upstream MAP kinase kinase-3 and -6 increased GFP expression compared to mock transfected controls. These results indicate that p38 MAPK regulates IL-1β-stimulated IL-6 at a post transcriptional mechanism and one of the primary targets of IL-6 gene regulation is the 3′UTR of IL-6.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Alveolar bone loss associated with periodontal diseases is the result of osteoclastogenesis induced by bacterial pathogens. The mitogen-activated protein kinase (MAPK) phosphatase 1 (MKP-1) is a critical negative regulator of immune response as a key phosphatase capable of dephosphorylating activated MAPKs. In this study, rat macrophages transduced with recombinant adenovirus (Ad.)MKP-1 specifically dephosphorylated activated MAPKs induced by lipopolysaccharide (LPS) compared with control cells. Bone marrow macrophages from MKP-1 knockout (KO) mice exhibited higher interleukin (IL)-6, IL-10, tumor necrosis factor (TNF)-α, and select chemokine compared with wild-type (WT) mice when stimulated by LPS. In addition, bone marrow cultures from MKP-1 KO mice exhibited significantly more osteoclastogenesis induced by LPS than when compared with WT mice. Importantly, MKP-1 gene transfer in bone marrow cells of MKP-1 KO mice significantly decreased IL-6, IL-10, TNF-α and chemokine levels, and formed fewer osteoclasts induced by LPS than compared with control group of cells. Furthermore, MKP-1 gene transfer in an experimental periodontal disease model attenuated bone resorption induced by LPS. Histological analysis confirmed that periodontal tissues transduced with Ad. MKP-1 exhibited less infiltrated inflammatory cells, less osteoclasts and less IL-6 than compared with rats of control groups. These studies indicate that MKP-1 is a key therapeutic target to control of inflammation-induced bone loss.
Resumo:
Background: the effect of triclosan plus the cationic detergent cetylpyridinium chloride (CPC) was evaluated for prostaglandin inhibition in human gingival fibroblasts. Since triclosan has previously been shown to inhibit proinflammatory cytokine induced prostaglandin E-2 (PGE(2)) production, we wanted to determine if triclosan, in the presence of CPC, could enhance these effects.Methods: Initial studies determined that both triclosan and CPC were cytotoxic to human gingival fibroblasts in concentrations exceeding 1.0 mu g/ml for either agent longer than 24 hours in a tissue culture. Therefore, subsequent studies measuring prostaglandin biosynthesis and cyclooxygenase (COX)-1 and COX-2 mRNA expression were performed in concentrations and times that did not significantly affect cell viability.Results: PGE2 biosynthesis was dose dependently inhibited by both triclosan and triclosan and CPC when challenged by tumor necrosis factor (TNF)-alpha or interleukin (IL)-1 beta. At pharmacologically relevant concentrations, triclosan and CPC inhibited ILAP-induced PGE(2) production to a greater extent than triclosan alone (P = 0.02). Moreover, enhanced COX-2 mRNA repression was observed with triclosan and CPC in comparison to triclosan alone in IL-1 beta and TNF-alpha stimulated cells. No effect on COX-I gene expression was observed. Further analysis of cell signaling mechanisms of triclosan and CPC indicates that nuclear factor-kappa B (NF-kappa B) and not p38 mitogen-activated protein kinase (MAPK) signaling may be impaired in the presence of triclosan and CPC.Conclusion: This study indicates that triclosan and CPC are more effective at inhibiting PGE(2) at the level of COX-2 gene regulation, and this combination may offer a potentially better anti -inflammatory agent in the treatment of inflammatory lesions in the oral cavity.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)