23 resultados para microwave processing
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
This study investigated the effect of different microwave curing cycles on the changes in occlusal vertical dimension of complete dentures. Four test groups with 12 maxillary dentures each were evaluated. Groups 1, 2 and 3 were polymerized with different cycles by microwave radiation and Group 4 was the control and cured by water bath. The average pin opening for all groups was less than 0.5 mm. There was no significant difference between the groups polymerized by the microwave method and the control group. However, analyses of the vertical dimension changes showed statistically significant differences between groups 2 (0.276 +/- 0.141 mm) and 3 (0.496 +/- 0.220 mm).
Resumo:
In this work, BSTSn powders prepared by the polymeric precursor method were heat treated in a domestic microwave oven (MW) using a SiC susceptor to absorb the microwave energy and transfer the heat to the powder. The main advantage of MW is to reduce the thermal treatment time for phase crystallization. The powders were heat treated at 300 degrees C for 20 h in conventional oven, 300 degrees C for 10 min, 20 min, and 30 min in MW and at 500 degrees C for 1 min in MW. After thermal treatment, the photoluminescent properties of powders at room temperature were analyzed. (c) 2007 Published by Elsevier B.V.
Resumo:
Filmes finos de SrBi2Ta2O9 foram depositados em substratos de Pt/Ti/SiO2/Si e, pela primeira vez, sinterizados em forno microondas doméstico. Os padrões de difração de raios X mostraram que os filmes são policristalinos. O processamento por microondas permite utilizar baixa temperatura na síntese e obter filmes com boas propriedades elétricas. Ensaios de microscopia eletrônica de varredura (MEV) e de Força Atômica (MFA) revelam boa aderência entre filme e substrato, com microestrutura de superfície apresentando grãos finos e esféricos e rugosidade de 4,7 nm. A constante dielétrica e o fator de dissipação, para freqüência de 100 KHz, à temperatura ambiente, foram de 77 e 0,04, respectivamente. A polarização remanescente (2Pr) e o campo coercitivo (Ec) foram 1,04 miC/cm² e 33 kV/cm. O comportamento da densidade de corrente de fuga revela três mecanismos de condução: linear, ôhmico e outro mecanismo que pode ser atribuído à corrente de Schottky. Dos padrões de DRX, análises das imagens por MEV e topografia de superfície por MFA observa-se que 10 min de tratamento térmico a 550 ºC, em forno microondas, é tempo suficiente para se obter a cristalização do filme.
Resumo:
O uso de microondas no processamento e obtenção de materiais tem adquirido nos últimos anos crescente interesse por parte de diversas áreas do conhecimento como a química e a engenharia de materiais. Neste sentido, aparatos especialmente projetados têm começado a ser descritos na literatura como reatores e câmaras de processamento a microondas visando aplicação na pesquisa e na indústria. em particular o uso de fornos de microondas domésticos em atividades científicas tem se mostrado de interesse dado uma série de novas aplicações, simplicidade e baixo custo. O presente trabalho reporta um dispositivo desenvolvido a partir de um forno de microondas doméstico, capaz de efetuar sínteses e processamentos de sólidos mesmo quando os materiais envolvidos não possuem susceptibilidade as microondas. O novo dispositivo tem sido utilizado com sucesso na síntese de óxidos metálicos e, em especial na sinterização e ordenamento de redes cristalinas de filmes finos.
Resumo:
Barium strontium titanate (Ba0.65Sr0.35TiO3) nanocrystalline thin films, which were produced by the soft chemical method, were crystallized at low temperature using a domestic microwave oven. A SiC susceptor were used to absorb the microwave energy and rapidly transfer the heat to the film. Low microwave power and short time have been used. The films obtained are crack-free, well-adhered, and fully crystallized. The microstructure displayed a polycrystalline nature with nanograin size. The metal-BST-metal structure of the thin films treated at 700 degrees C show food electric properties. The ferroelectric nature of the BST35 thin film was indicated by buttertly- shaped C-V curves. The capacitance-frequency curves reveal that the dielectric constant may reach a value up to 800 at 100kHz. The dissipation factor was 0.01 at 100kHz. The charge storage density as function of applied voltage graph showed that the charge storage densities are suitable for use in trench type 64 Mb ( 1-5 mu C/cm(2) and 265 Mb (2-11 mu C/cm(2)) DRAMs. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The synthesis and characterization of CuO flower-nanostructure processed in domestic hydrothermal microwave oven was presented. Phase analysis was carried out using X-ray diffraction (XRD) and micro-Raman scattering (MRS) and the results confirmed the CuO flower-nanostructure as a single-phase. The field-emission scanning electron microscopy (FEG-SEM) was used to estimate the average spheres diameter while transmission electron microscope (TEM) to observe the thorn of the flower-nanostructures. The mechanism of CuO flower-nanostructures formation is proposed and explained. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The non-ohmic and dielectric properties as well as the dependence on the microstructural features of CaCu(3)Ti(4)O(12)/CaTiO(3) ceramic composites obtained by conventional and microwave sintering were investigated. It was demonstrated that the non-ohmic and dielectric properties depend strongly on the sintering conditions. It was found that the non-linear coefficient reaches values of 65 for microwave-sintered samples and 42 for samples sintered in a conventional furnace when a current density interval of 1-10 mA cm(-2) is considered. The non-linear coefficient value of 65 is equivalent to 1500 for samples sintered in the microwave if a current interval of 5-30 mA is considered as is shortly discussed by Chung et al (2004 Nature Mater. 3 774). Due to a high non-linear coefficient and a low leakage current (90 mu A) under both processing conditions, these samples are promising for varistor applications. The conventionally sintered samples exhibit a higher relative dielectric constant at 1 kHz (2960) compared with the samples sintered in the microwave furnace (2100). At high frequencies, the dielectric constant is also larger in the samples sintered in the conventional furnace. Depending on the application, one or another synthesis methodology is recommended, that is, for varistor applications sintered in a microwave furnace and for dielectric application sintered in a conventional furnace.
Resumo:
Purpose: The purpose of this study was to compare the artificial tooth positional changes following the flasking and polymerization of complete dentures by a combination of two flasking methods and two polymerization techniques using computer graphic measurements.Materials and Methods: Four groups of waxed complete dentures (n = 10) were invested and polymerized using the following techniques: (1) adding a second investment layer of gypsum and conventional water bath polymerization (Control), (2) adding a second investment layer of gypsum and polymerization with microwave energy (Gyp-micro), (3) adding a second investment layer of silicone (Zetalabor) and conventional polymerization (Silwater), and (4) adding a second investment layer of silicone and polymerization with microwave energy (Silmicro). For each specimen, six segments of interdental distances (A to F) were measured to determine the artificial tooth positions in the waxed and polymerized stages using software program AutoCad R14. The mean values of the changes were statistically compared by univariate ANOVA with Tukey post-hoc test at 5% significance.Results: There were no significant differences among the four groups, except for segment D of the Silmicro group (-0.004 +/- 0.032 cm) in relation to the Gypwater group (0.044 +/- 0.031 cm) (p < 0.05), which presented, repectively, expansion and shrinkage after polymerization.Conclusions: Within the limitations of this study, it was concluded that although the differences were not statistically significant, the use of a silicone investment layer when flasking complete dentures resulted in the least positional changes of the artificial teeth regardless of the polymerization technique.
Resumo:
Objective: The purpose of this study was to compare the dental movement that occurs during the processing of maxillary complete dentures with 3 different base thicknesses, using 2 investment methods, and microwave polymerization.Methods: A sample of 42 denture models was randomly divided into 6 groups (n = 7), with base thicknesses of 1.25, 2.50, and 3.75 mm and gypsum or silicone flask investment. Points were demarcated on the distal surface of the second molars and on the back of the gypsum cast at the alveolar ridge level to allow linear and angular measurement using AutoCAD software. The data were subjected to analysis of variance with double factor, Tukey test and Fisher (post hoc).Results: Angular analysis of the varying methods and their interactions generated a statistical difference (P = 0.023) when the magnitudes of molar inclination were compared. Tooth movement was greater for thin-based prostheses, 1.25 mm (-0.234), versus thick 3.75 mm (0.2395), with antagonistic behavior. Prosthesis investment with silicone (0.053) showed greater vertical change compared with the gypsum investment (0.032). There was a difference between the point of analysis, demonstrating that the changes were not symmetric.Conclusions: All groups evaluated showed change in the position of artificial teeth after processing. The complete denture with a thin base (1.25 mm) and silicone investment showed the worst results, whereas intermediate thickness (2.50 mm) was demonstrated to be ideal for the denture base.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)