11 resultados para manufacturing time
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
This article presents a detailed study of the application of different additive manufacturing technologies (sintering process, three-dimensional printing, extrusion and stereolithographic process), in the design process of a complex geometry model and its moving parts. The fabrication sequence was evaluated in terms of pre-processing conditions (model generation and model STL SLI), generation strategy and physical model post-processing operations. Dimensional verification of the obtained models was undertook by projecting structured light (optical scan), a relatively new technology of main importance for metrology and reverse engineering. Studies were done in certain manufacturing time and production costs, which allowed the definition of an more comprehensive evaluation matrix of additive technologies.
Resumo:
Pós-graduação em Ciências Odontológicas - FOAR
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The objective of the paper is to report research carried out over two years aiming at developing a framework to support the management of manufacturing organizations for whom reducing throughput time is strategically important, either because they compete based on short lead times or because they choose to pursue other objectives such as cost reduction by means of reducing their manufacturing cycle times. A step-by-step method is proposed based on the analyses of a number of Brazilian best practice cases (all manufacturing companies and all part of large multi-national corporations) and on the relevant literature.
Resumo:
An accurate estimate of machining time is very important for predicting delivery time, manufacturing costs, and also to help production process planning. Most commercial CAM software systems estimate the machining time in milling operations simply by dividing the entire tool path length by the programmed feed rate. This time estimate differs drastically from the real process time because the feed rate is not always constant due to machine and computer numerical controlled (CNC) limitations. This study presents a practical mechanistic method for milling time estimation when machining free-form geometries. The method considers a variable called machine response time (MRT) which characterizes the real CNC machine's capacity to move in high feed rates in free-form geometries. MRT is a global performance feature which can be obtained for any type of CNC machine configuration by carrying out a simple test. For validating the methodology, a workpiece was used to generate NC programs for five different types of CNC machines. A practical industrial case study was also carried out to validate the method. The results indicated that MRT, and consequently, the real machining time, depends on the CNC machine's potential: furthermore, the greater MRT, the larger the difference between predicted milling time and real milling time. The proposed method achieved an error range from 0.3% to 12% of the real machining time, whereas the CAM estimation achieved from 211% to 1244% error. The MRT-based process is also suggested as an instrument for helping in machine tool benchmarking.
Resumo:
This paper presents an experimental study on the life of abrasive discs in cut-off type operations with two conditions of cutting speed. The cutting time is shown with a comparative analysis of the cutting speed.
Resumo:
This article describes the application of an Artificial Intelligence Planner in a robotized assembly cell that can be integrated to a Flexible Manufacturing System. The objective is to allow different products to be automatically assembled in a single production line with no pre-established assembly plans. The planner function is to generate action plans to the robot, in real time, from two input information: the initial state (disposition of parts of the product in line) and the final state (configuration of the assembled product). Copyright © 2007 IFAC.
Resumo:
This work presents a methodological proposal for acquisition of biometric data through telemetry basing its development on a research-action and a case study. Nowadays, the qualified professionals of physical evaluation have to use specific devices to obtain biometric signals and data. These devices in the most of the time are high cost and difficult to use and handling. Therefore, the methodological proposal was elaborate in order to develop, conceptually, a bio telemetric device which could acquire the desirable biometric signals: oxymetry, biometrics, corporal temperature and pedometry which are essential for the area of physical evaluation. It was researched the existent biometrics sensors, the possible ways for the remote transmission of signals and the computer systems available so that the acquisition of data could be possible. This methodological proposal of remote acquisition of biometrical signals is structured in four modules: Acquisitor of biometrics data; Converser and transmitter of biometric signals; Receiver and Processor of biometrics signals and Generator of Interpretative Graphs. The modules aim the obtention of interpretative graphics of human biometric signals. In order to validate this proposal a functional prototype was developed and it is presented in the development of this work.
Resumo:
The real-time monitoring of events in an industrial plant is vital, to monitor the actual conditions of operation of the machinery responsible for the manufacturing process. A predictive maintenance program includes condition monitoring of the rotating machinery, to anticipate possible conditions of failure. To increase the operational reliability it is thus necessary an efficient tool to analyze and monitor the equipments, in real-time, and enabling the detection of e.g. incipient faults in bearings. To fulfill these requirements some innovations have become frequent, namely the inclusion of vibration sensors or stator current sensors. These innovations enable the development of new design methodologies that take into account the ease of future modifications, upgrades, and replacement of the monitored machine, as well as expansion of the monitoring system. This paper presents the development, implementation and testing of an instrument for vibration monitoring, as a possible solution to embed in industrial environment. The digital control system is based on an FPGA, and its configuration with an open hardware design tool is described. Special focus is given to the area of fault detection in rolling bearings. © 2012 IEEE.
Resumo:
The constant search for improvement and survival of the companies makes essential the utilization of cost reduction strategies and resources optimization. This study had as its objective the utilization of Lean Manufacturing tools for the repair process lead time reduction, in a car audio manufacturer. Performing an action research, the major problems were studied, such as the potential causes and the possible improvement activities, using the DMAIC methodology. An action plan was developed for all involved processes and, as a result, the objective was reached by making a direct impact on the customers’ satisfaction and adding a competitive differential for the company
Resumo:
Due to globalization, is increasingly common for companies to make their products more competitive. With this background, the industries seek more efficient ways to produce. This paper aims to examine the tools of Lean Manufacturing applied in an industry luminaries ,addressing the positive aspects. Were applied tools like value stream mapping, Kanban, setup reduction and 5S program. With the application of these tools obtained improvements in processes, reducing lead time from factory and reducing the cost of the luminaries