132 resultados para low-heating-rate sintering

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of heating rate on the sintering of agglomerated NaNbO3 powders, processed by the polymeric precursors method, was studied. The results showed that the presence of agglomerated powder leads to a heterogeneous microstructure, with bimodal grain size distribution, after sintering. Using a high heating rate, the sintering of agglomerated particles was inhibits, leading to a homogeneous microstructure, with single grain size distribution. (C) 1998 Kluwer Academic Publishers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The microstructural evolution, grain growth and densification for the varistor systems ZnO-Bi2O3 (ZB), ZnO-Bi2O3-Sb2O3 (ZBS), ZnO-Bi2O3-Sb2O3-MnO-Cr 2O3-CoO (ZBSCCM) were studied using constant heating rate sintering, scanning electron microscopy (SEM) and in situ phase formation measurement by high temperature X-ray diffraction (HT-XRD). The results showed that the densifying process is controlled by the formation and decomposition of the Zn2Bi3Sb3O14 pyrochlore (PY) phase for the ZBS and ZBSCCM systems. The addition of transition metals (ZBSCCM system) alters the formation and decomposition reaction temperatures of the pyrochlore phase and the morphology of the Zn7Sb2O12 spinel phase. Thus, the spinel grains act as inclusions and decrease the ZnO grain growth rate. Spinel grain growth kinetics in the ZBSCCM system showed an n value of 2.6, and SEM and HT-XRD results indicate two grain growth mechanisms based on coalescence and Ostwald ripening. © 1996 Chapman & Hall.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Different thermal treatments for the synthesis of BaTiO3 powder obtained through the Pechini method were studied. The synthesis of BaTiO3 starts at 150 °C by the thermal dehydration of organic precursors. The usual inevitable formation of barium carbonate during the thermal decomposition of the precursor could be retarded at lower calcination temperatures and optimized heating rates. The organic precursors were treated at temperatures between 200 and 400 °C. Then, the samples were calcined at 700 and 800 °C for 4 and 2 h, respectively. The resulting ceramic powders were characterized by gravimetric and differential thermal analyses, X-ray powder diffraction and infrared spectroscopy. It was found that depending on the heating rate and final temperature of the thermal treatment, high amounts of BaCO3 and TiO2 could be present due to the high concentration of organics in the final calcination step. © 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lead zirconate powder, with Zr/Ti ratio of 50/50 was prepared by polymeric precursor method and doped with 3, 5 and 7 mol% of Sr+2 Or Ba+2, as well as by 0.2 to 5 mol% of Nb+5. The powder was calcined at 750 degrees C by 4 hours and milled during 1.5 h in isopropilic alcohol. Powders were characterized by surface area measurements (BET method), by infrared spectroscopy and by X-ray diffraction to characterize the crystal structure. Isostatically pressed samples were sintered in a dilatometer furnace by using a constant heating rate of 10 degrees C/min from ambient to 1200 degrees C. Synthetic air and air with water vapor were used as atmospheres. Both Sr+2 and Ba+2 substitute Pb+2 and favor the formation of rhombohedral phase. Otherwise, Nb+5 substitute preferentially Zr+4 favoring tetragonal phase. The concentration of dopants and the atmosphere influence the densification and the microstructure of the PZT, which alters the dielectric and piezoelectric properties of the ceramics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dense SnO2 ceramics were obtained by doping with ZnO concentrations varies from 0.5 to 5.0 mel. The obtained powder was isostaticaly pressed to 210MPa in cylindrical shape and sintered from ambient to 1.500 degrees C using constant heating rate of 10 degrees C/min. Densities above 97% were obtained depending on the ZnO doping concentration. A maximum density was reached with the addition of 2 mol%. It can be concluded from shrinkage data and the observed microstructure obtained by SEM that the solid solution limit for ZnO in SnO2 is about 1.0 mol%. Above this concentration the formation of a second ceramic phase is observed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dielectric properties and loss of Bi1.5ZnSb1.5O7 a poor-semiconducting ceramic were investigated by impedance spectroscopy, in the frequency range from 5 Hz to 13 MHz. Electric measurements were performed from 100 to 700 degreesC. Pyrochlore type phase was synthesized by the polymeric precursor method. Dense ceramic with 97% of the theoretical density was prepared by sintering via constant heating rate. The dielectric permittivity dependence as a function of frequency and temperature showed a strong dispersion at frequency lower than 10 kHz. The losses (tan delta) exhibit slight dependence with the frequency at low temperatures presenting a strong increase at temperatures higher than 400 degreesC. A decrease of the loss magnitude occurs with increasing frequency. Relaxation times were extracted using the dielectric functions Z(omega) and M(omega). The plots of the relaxation times tau(Z'), and tau(M) as a function of temperature follow the Arrhenius law, where a single slope is observed with activation energy values equal to 1.38 and 1.37 eV, respectively. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Additions of 0.5 to 2.0 mol% of CoO or MnO2 onto SnO, promote densification of this oxide up to 99% of theoretical density. The temperature of the maximum shrinkage rate (TM) and the relative density in the maximum densification rate (p*) during constant sintering heating rate depend on the dopant concentration. Thus, dopant concentration controls the densifying and nondensifying mechanisms during sintering. The densification of SnO2 witih addition of CoO or MnO, is explained in terms of the creation of oxygen vacancies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PbMg1/3Nb2/3O3 (PMN) powder was prepared by citrate organic solution, and barium titanate (BT) seed particles were added to encourage the perovskite phase formation. Sintering was followed using the constant heating rate mode of a dilatometer, and it was observed that the seed concentration affected the PMN shrinkage rate and crystal structure. The study of the lattice parameters of the samples after the sintering process indicates that the diffusion of the titanium and of the barium inside perovskite and pyrochlore PMN phases occurs. Moreover, this substitution provoked a decrease of the lattice parameters as showed by the Rietveld refinement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PMN powder samples with PbO excess of 0, 1,2 and 3% were submitted to the pressing and sintering at 1200°C for 4h with a heating rate of 3°C/min. A new sintering system, developed at our laboratories, was used. It allows obtaining more information on the sintering process. The sintered samples in the new system were compared to sintered samples in the C system. The microstructure, dielectric properties and the effect of the PbO excess in different sintering systems were compared. The N system permitted to obtain a ceramic with better properties, such density, dielectric constant and very homogeneous microstructure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent studies have been done to achieve biomedical alloys containing non-toxic elements and presenting low elastic moduli. It has been reported that Ti-Nb-Zr alloys rich in beta phase, especially Ti-13Nb-13Zr, have potential characteristics for substituting conventional materials such as Ti-6Al-4V, stainless steel and Co alloys. The aim of this work is to study the internal friction (IF) of Ti-13Nb-13Zr (TNZ) alloy due to the importance of the absorption impacts in orthopedic applications. The internal friction of this alloy produced by arc melting was measured using an inverted torsion pendulum with the free decay method. The measurements were performed from 77 to 700 K with heating rate of 1 K/min, in a vacuum better than 10-5 mBar. The results show a relaxation structure at high temperature strongly dependent on microstructure of the material. Qualitative discussions are presented for the experimental results, and the possibility of using the TNZ as a high damping material is briefly mentioned.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An investigation on the sinterization of Gd:CeO2 (Ce 0.85Gd0.15O1.9-δ ceramic system) 3-10 nm nanoparticles in pressed bodies was done. The heating rate was taken as a key parameter and two competing sinterization processes were identified, associated with different diffusional mechanisms. Using heating rates of 113 C min -1, a high-final density (98 % of the theoretical) was obtained by superposing the two aforementioned mechanisms, resulting in a homogeneous microstructure at lower temperatures. © 2012 Akadémiai Kiadó, Budapest, Hungary.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ti and its alloys have been used thoroughly in the production of prostheses and dental implants due to their properties, such as high corrosion resistance, low elasticity modulus and high mechanical strength/density relation. Among the Ti-based alloys, the Ti-35Nb-7Zr-5Ta (TNZT) is one that presents the smallest elasticity modulus, making it an excellent alternative to be used as a biomaterial. In this paper, mechanical spectroscopy measurements were made in TNZT alloys containing several quantities of oxygen and nitrogen in solid solution. Mechanical spectroscopy measurements were made by using a torsion pendulum, operating at an oscillation frequency in the interval 4-30 Hz, temperature in the range 100-700 K, heating rate of about 1 K/min and vacuum lower than 10(-5) Torr. Complex relaxation structures and a reduction in the elasticity modulus were observed for the heat-treated and doped samples. The observed peaks were associated with the interactions of interstitial atoms and the alloy elements. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)