53 resultados para iron oxide

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Superparamagnetic iron oxide nanoparticles (SPIONs) are applied in stem cell labeling because of their high magnetic susceptibility as compared with ordinary paramagnetic species, their low toxicity, and their ease of magnetic manipulation. The present work is the study of CD133(+) stem cell labeling by SPIONs coupled to a specific antibody (AC133), resulting in the antigenic labeling of the CD133+ stem cell, and a method was developed for the quantification of the SPION content per cell, necessary for molecular imaging optimization. Flow cytometry analysis established the efficiency of the selection process and helped determine that the CD133 cells selected by chromatographic affinity express the transmembrane glycoprotein CD133. The presence of antibodies coupled to the SPION, expressed in the cell membrane, was observed by transmission electron microscopy. Quantification of the SPION concentration in the marked cells using the ferromagnetic resonance technique resulted in a value of 1.70 x 10 (13) mol iron (9.5 pg) or 7.0 x 10 (6) nanoparticles per cell ( the measurement was carried out in a volume of 2 mu L containing about 6.16 x 10 5 pg iron, equivalent to 4.5 x 10 (11) SPIONs). (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, synthesis of the Fe55Pt45/Fe3O4 core/shell structured nanoparticles using the modified polyol process combined with the seed-mediated growth method is reported. Iron oxide shell thickness was tuned controlling the Fe(acac)(3)/FePt seeds in the reaction medium. Annealing of the core/shell structure leads to iron-rich layer formation around the hard FePt phase in the nanoparticle core. However, the 2 nm Fe3O4 shell thickness seems to be the limit to obtain the enhanced magnetization close to the alpha-Fe and preserving an iron oxide shell after annealing at 500 degrees C for 30 min in a reducing atmosphere. The presence of both the oxide layer on nanoparticle surface and an intermediate iron-rich FePt layer after annealing promote strong decreases in the coercive field of the 2-nm-oxide shell thickness. These annealed nanoparticles were functionalized with dextran, presenting the enhanced characteristics for biomedical applications such as higher magnetization, very low coercivity, and a slightly iron oxide passivated layer, which leads an easy functionalization and decreases the nanoparticle toxicity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Uniform metal iron ellipsoidal particles of around 200 nm in length were obtained by reduction and passivation of alumina-coated alpha-Fe2O3 (hematite) particles under different conditions of temperature and hydrogen flow rate. The monodispersed hematite particles were prepared by the controlled hydrolysis of ferric sulfate and further coated with a homogeneous thin layer of Al2O3 by careful selection of the experimental conditions, mainly pH and aluminum salt concentration. The reduction mechanism of alpha-Fe2O3 into alpha-Fe was followed by x-ray and electron diffraction, and also by the measurements of the irreversible magnetic susceptibility. The transformation was found to be topotactic with the [001] direction of hematite particles, which lies along the long axis of the particles, becoming the [111] direction of magnetite and finally the [111] direction of metal iron. Temperature and hydrogen flow rate during the reduction have been found to be important parameters, which determine not only the degree of reduction but also the crystallite size of the final particles. Magnetic characterization of the samples shows that the only parameters affected by the crystallite size are the saturation magnetization and magnetic time-dependence effect, i.e., activation volume. (C) 2002 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes the preparation and characterization of phenolic resins' thermospheres covered by a magnetic phase of iron oxide. The thermospheres were prepared by allowing phenol and formaldehyde to react under dispersion polymerization conditions and the iron oxide phase was incorporated in situ onto the phenolic resin particles by adding concentrated NH3 to FeCl2 in DMSO. This reaction was conducted at 70 degrees C under nitrogen atmosphere in a controlled temperature vessel, and the modified resin was isolated and dried in vacuo. Both pure and modified resins were characterized by DRX, TG- DTA, and MEV/ EDX. The modified particles were attracted by a magnetic field, indicating the fixation of magnetic iron oxide. No diffraction peaks were observed in DRX analysis; thermal analysis ( DTA) of both pure and modified resins presented exothermic events between 300 and 680 degrees C, and 300 and 570 degrees C, respectively, indicating the microstructure of the resin was modified after the treatment. Thermogravimetric analysis ( TGA) of the pure resin registered a 2.0% residue, compared to 8.0% for the modified resin. These residues correspond to about 7.0% of fixed iron oxide. MEV/ EDX analyses confirm the modification of the resins by the process of fixing iron oxide.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mossbauer spectroscopy was used in this study to investigate magnetite nanoparticles, obtained by spray pyrolysis and thermal treatment under H-2 reduction atmosphere. Room temperature XRD data indicate the formation of magnetite phase and a second phase (metallic iron) which amount increases as the time of reduction under H2 is increased. While room temperature Mossbauer data confirm the formation of the cubic phase of magnetite and the occurrence of metallic iron phase, the more complex features of 77 K-Mossbauer spectra suggest the occurrence of electronic localization favored by the different crystalline phase of magnetite at low temperatures which transition to the lower symmetry structure should occur at T similar to 120 K (Verwey transition).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mechanism of formation and growth of hydrous iron oxide (FeOOH) during the initial stages of forced hydrolyses of ferric chloride aqueous solution was studied by small angle X-ray scattering (SAXS). The effect of the hydrolysis temperature (60°C, 70°C and 80°C) and of the addition of urea on the formation of colloidal particles under isothermal conditions were investigated. Based on the experimental scattering functions in the Guinier range, we suggest the presence of elongated colloidal particles. The particle diameter and length, and their variation with time, were determined by fitting the form factor of prolate ellipsoids to the experimental scattering functions. We have assumed that our solutions are in a dilute state and that all colloidal particles are approximately of the same size. The colloidal particles have geometrical shapes similar to those of the subcrystals that build up the superstructure of β-FeOOH crystals, indicating that the formation of this hydrous iron oxide is governed by an aggregation process. Otherwise, the addition of urea hinders the growth and yields smaller particles, with a reduction in size greater than 50%. © 2000 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Hydrogen interaction with oxide films grown on iron electrodes at open circuit potential (E-oc) and in the passive region (+0.30 V-ECS) was studied by chronopotentiometry, chronoamperometry and electrochemical impedance spectroscopy techniques. The results were obtained in deaerated 0.3 mol L-1 H3BO3 + 0.075 mol L-1 Na2B4O7 (BB, pH 8.4) solution before, during and after hydrogen permeation. The iron oxide film modification was also investigated by means of in situ X-ray absorption near-edge spectroscopy (XANES) and scanning electrochemical microscopy (SECM) before and during hydrogen permeation. The main conclusion was that the passive film is reduced during the hydrogen diffusion. The hydrogen permeation stabilizes the iron surface at a potential close to the thermodynamic water stability line where hydrogen evolution can occur. The stationary condition required for the determination of the permeation parameters cannot be easily attained on iron surface during hydrogen permeation. Moreover, additional attention must be paid when obtaining the transport parameters using the classical permeation cell. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O objetivo deste trabalho foi determinar a mobilidade do herbicida sulfentrazone em duas classes de solos (Nitossolo Vermelho e Neossolo Quartzarênico), em função de índices pluviométricos crescentes, sendo, portanto, influenciado pelas propriedades químicas e físicas dos solos com diferentes teores de ferro. em tubos de PVC de 10 cm de diâmetro por 50 cm de comprimento, preenchidos com os solos e saturados com água a 65% (p/p), foi aplicado o sulfentrazone (800 g ha-1). Na seqüência, foram simuladas chuvas diárias de 10 mm até atingir os índices pluviométricos de 30, 60 e 90 mm. Os tubos de PVC foram então desmontados - semeando-se Sorghum bicolor nas profundidades correspondentes de 2,5; 7,5; 12,5; 17,5; 22,5; e 30,0 cm da superfície do tubo - e mantidos em casa de vegetação por 15 dias, para avaliação da germinação e do crescimento inicial das plântulas. No final do experimento foram avaliadas as alterações morfofisiológicas que caracterizavam os efeitos tóxicos do produto, além de se medir o comprimento da parte aérea até a última lígula visível e a fitomassa seca das plantas. Quando sob precipitação de 90 mm no Neossolo Quartzarênico, o sulfentrazone formou uma banda de arraste de até 12,5 cm e, no Nitossolo Vermelho, até os 7,5 cm.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Este trabalho objetivou determinar a mobilidade do sulfentrazone em duas classes de solos em função de índices pluviométricos, bem como possíveis influências das propriedades químicas e físicas de Latossolo Vermelho e Chernossolo com diferentes teores de ferro na ação do herbicida. Foram utilizados como recipientes 36 tubos de PVC de 10 cm de diâmetro por 50 cm de comprimento. Os recipientes foram preenchidos com os solos e umedecidos a 65% (p/p) da capacidade de saturação, quando se fez a aplicação do sulfentrazone (800 g ha-1 de i.a.) na área exposta dos solos. Na seqüência, foram simuladas chuvas diárias de 10 mm até atingir o índice pluviométrico desejado (30, 60 e 90 mm), sendo, posteriormente, desmontados seis tubos de cada solo (com e sem aplicação). Foram semeadas cinco sementes de sorgo (Sorghum bicolor) nas profundidades de 2,5; 7,5; 12,5; 17,5; 22,5; e 30,0 cm, mantidas em casa de vegetação por 15 dias para avaliação da germinação e do crescimento inicial. Decorrido esse tempo, foi realizada avaliação de possíveis alterações morfofisiológicas que pudessem ser caracterizadas como efeitos tóxicos do produto e mediu-se o comprimento da parte aérea até a última lígula visível. As partes aéreas foram secas em estufa com circulação forçada de ar (70 ºC por 96 horas), para obtenção de matéria seca. No Chernossolo ocorreu uniformidade da distribuição do produto ao longo do tubo, proporcional à precipitação, e no Latossolo Vermelho o sulfentrazone foi pouco móvel, permanecendo na camada superficial, independentemente da precipitação.