39 resultados para intercalation
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
We developed a procedure to take advantage of the magnetic-field-modulation-frequency effect on the line shape of conduction-electron-spin resonance of graphite intercalation compounds (GIC's) to extract the absolute value of the in-plane resistivity. We calculated the power absorbed in each slice of the sample normal to the wave penetration, multiplied by a factor to account for the magnetic-field-modulation-frequency effect. Room-temperature spectra of stage-I AlCl3-intercalated GIC in both H-0 perpendicular-to c and H-0 parallel-to c configurations were fitted to the theoretical line shapes and the value of in-plane resistivity (and also the value of c-axis resistivity) obtained from the fitting parameters are in reasonable agreement with those from the literature.
Resumo:
The K+ reversible processes for ion exchange in KhFek[Fe(CN)(6)](l)center dot mH(2)O host compounds (Prussian Blue) were thermodynamically analyzed. A thermodynamic approach was established and developed based on the consideration of a lattice-gas model where the electronic contribution to the chemical potential is neglected and the ion-host interaction is not considered. The occupation fraction of the intercalation process was calculated from the kinetic parameters obtained through ac-electrogravimetry in a previous paper. In this way, the mass potential transfer function introduces a new way to evaluate the thermodynamic aspect of intercalation. Finally, based on the thermodynamic approach, the energy used to put each K+ ion into the host material was calculated. The values were shown to be in good agreement with the values obtained through transient techniques, for example, cyclic voltammetry. As a result, this agreement between theory and experimental data validates the thermodynamic approach considered here, and for the first time, the thermodynamic aspects of insertion were considered for mixed valence materials.
Resumo:
Intercalation processes and corresponding diffusion paths of Li ions into spinel-type structured Li(1+x)Ti(2)O(4) (0 <= x <= 0.375) are systematically studied by means of periodic density functional theory calculations for different compositions and arrangements. An analysis of the site preference for intercalation processes is carried out, while energy barriers for the diffusion paths have been computed in detail. Our results indicate that the Li insertion is thermodynamically favorable at octahedral sites 16c in the studied composition range, and Li migration from tetrahedral sites 8a to octahedral sites 16c stabilizes the structure and becomes favorable for compositions x >= 0.25. Diffusion paths from less stable arrangements involving Li migrations between tetrahedral and octahedral sites exhibit the lowest energy barrier since the corresponding trajectories and energy profiles take place across a triangle made by three neighboring oxygen anions without structural modification. Theoretical and experimental diffusion coefficients are in reasonable agreement.
Resumo:
Lithium intercalation into double rare earth chromates was carried out. It was found that the compounds NaxLi1-xLa(CrO4)2 belong to the NaLa(CrO4)2 structural type and may be recommended as fast ionic conductors. At small values of x a third polymorphous modification of LiLa(CrO4)2 can be stabilized. Attempts to intercalate lithium into CsLa(CrO4)2 lead to collapse of the lamellar network with the formation of LaCrO4 and alkaline chromates. Ion exchange Li+/H+ data are consistent with these considerations. © 1994.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The binding selectivity of the M(phen)(edda) (M = Cu, Co, Ni, Zn; phen = 1,10-phenanthroline, edda = ethylenediaminediacetic acid) complexes towards ds(CG)(6), ds(AT)(6) and ds(CGCGAATTCGCG) B-form oligonucleotide duplexes were studied by CD spectroscopy and molecular modeling. The binding mode is intercalation and there is selectivity towards AT-sequence and stacking preference for A/A parallel or diagonal adjacent base steps in their intercalation. The nucleolytic properties of these complexes were investigated and the factors affecting the extent of cleavage were determined to be: concentration of complex, the nature of metal(11) ion, type of buffer, pH of buffer, incubation time, incubation temperature, and the presence of hydrogen peroxide or ascorbic acid as exogenous reagents. The fluorescence property of these complexes and its origin were also investigated. The crystal structure of the Zn(phen)(edda) complex is reported in which the zinc atom displays a distorted trans-N4O2 octahedral geometry; the crystal packing features double layers of complex molecules held together by extensive hydrogen bonding that inter-digitate with adjacent double layers via pi...pi interactions between 1,10-phenanthroline residues. The structure is compared with that of the recently described copper(II) analogue and, with the latter, included in molecular modeling. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
A small and poorly diversified bivalve fauna from Taciba Formation, Itarare Group, Parana Basin (State of Santa Catarina, Mafra Municipality), is described in this paper for the first time, based on new findings. The fauna is recorded in a 30 cm thick interval of fine sandstone locally at the top of Taciba Formation, in the Butia quarry. The studied fossil-bearing sand-stone bed is a marine intercalation recording a brief eustatic rise in sea-level, probably following glacier retreat and climate amelioration at the end of a broad glacial scenario. The fauna is mainly dominated by productid brachiopods, which are not described here, and rare mollusk shells (bivalves and gastropods). Two bivalve species were identified: Myonia argentinensis (Harrington, 1955), and Aviculopecten multiscalptus (Thomas, 1928). The presence of Myonia argentinensis is note-worthy since this species is also present in the Baitaca assemblage found in marine siltstones (Baitaca assemblage) of the Rio do Sul Formation, cropping out at the Teixeira Soares region, Parana State. This species is also recorded in the bivalve fauna from the Bonete Formation, Pillahinco Group, Sauce Grande Basin, Buenos Aires Province, in Argentina. Hence, the marine bivalves of the Taciba Formation are associated with the transgressive event that characterizes the Eurydesma fauna, indicating a Late Asselian-Sakmarian age for the bivalve fauna. Presence of the Myonia argentinensis megadesmid species reinforces the Gondwanic nature of the studied fauna.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The presumably soluble KFe(+3)[Fe(2+)(CN)(6)] structure of electrochemically synthesized hexacyanoferrate materials (Prussian Blue) containing K(+) ions was determined for the first time in this study. Prior to drawing conclusions from a structural analysis, the main goal was to make a precise analysis of the inferred soluble structure, that is, KFe(+3) [Fe(2+)(CN)(6)], which is frequently referred to in the literature as the final stable electrochemically synthesized structure. Indeed, a successful X-ray powder diffraction experiment using X-ray synchrotron radiation was made of a powder placed in a 0.5 mm diameter borosilicate glass capillary, which was obtained by removing sixty 90 nm thin films from the substrates on which they were prepared. However, the conclusions were highly unexpected, because the structure showed that the [Fe(CN)61 group was absent from similar to 25% of the structure, invalidating the previously presumed soluble KFe(+3)[Fe(2+)(CN)(6)] structure. This information led to the conclusion that the real structure of Prussian Blue electrochemically synthesized after the stabilization process is Fe(4)[Fe(CN)(6)](3)center dot mH(2)O containing a certain fraction of inserted K(+) ions. In fact, based on an electrogravimetric analysis (Gimenez-Romero et al., J. Phys. Chem. B 2006, 110, 2715 and 19352) complemented by the Fourier maps. it is possible to affirm that the K(+) was part of the water crystalline substructure. Therefore, the interplay mechanism was reexamined considering more precisely the role played by the water crystalline substructure and the K+ alkali metal ion. As a final conclusion, it is proposed that the most precise way to represent the structure of electrochemically synthesized and stabilized hexacyanoferrate materials is Fe(4)(3+) Fe(2+)(CN)(6)](3)center dot[K(h)(+)center dot OH(h)(-)center dot mH(2)O]. The importance of this result is that the widespread use of the terms soluble and insoluble in the electrochemical literature could be reconsidered. Indeed, only one type of structure is insoluble, and that is Fe(4)[Fe(CN)(6)](3)center dot mH(2)O hence, the use of the terms soluble and insoluble is inappropriate from a structural point of view. The result of the presence of the [Fe(CN)61 vacancy a, roup is that the water Substructure cannot be ignored in the ionic interplay mechanism which controls the intercalation and redox process, as was previously confirmed by electrogravimetric analyses (Gimenez-Romero et al., J. Phys. Chem. B 2006, 110, 2715 Garcia-Jareno et al., Electrochim. Acta 1998, 44, 395: Kulesza, Inorg. Chem. 1990, 29, 2395).
Resumo:
We report the synthesis and characterization of organic-inorganic hybrid materials: Zn-2-Al-LDHs (layered double hydroxides) containing 3-(1H-pyrrol-1-yl)-propanoate and 7-(1H-pyrrol-l-yl)-heptanoate as the interlayer anions. The LDHs were synthesized by the co-precipitation method at constant pH followed by hydrothermal treatment for 72 h. The materials were characterized by PXRD, C-13 CP-MAS NMR, TGA, and ESR. The basal spacing found by PXRD technique is coincident with the formation of bilayers of the intercalated anions. The solid state C-13 NMR showed that the interlayered anions remain identical after intercalation. ESR data suggest that the monomers connect each other in a limited number of guests when a thermal treatment is applied. The inorganic LDH sheets delay the temperature of degradation of the monomers. (c) 2006 Elsevier Ltd. All rights reserved.