169 resultados para integrable hierarchies
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
We point out that a common feature of integrable hierarchies presenting soliton solutions is the existence of some special ''vacuum solutions'' such that the Lax operators evaluated on them, lie in some abelian subalgebra of the associated Kac-Moody algebra. The soliton solutions are constructed out of those ''vacuum solitons'' by the dressing transformation procedure.
Resumo:
An algebraic approach is employed to formulate N = 2 supersymmetry transformations in the context of integrable systems based on loop superalgebras sl(p + 1, p), p >= 1, with homogeneous gradation. We work with extended integrable hierarchies, which contain supersymmetric AKNS and Lund-Regge sectors. We derive the one-soliton solution for p = 1 which solves positive and negative evolution equations of the N = 2 supersyrnmetric model.
Resumo:
We present a new realization of scalar integrable hierarchies in terms of the Toda lattice hierarchy. In other words, we show on a large number of examples that an integrable hierarchy, defined by a pseudo-differential Lax operator, can be embedded in the Toda lattice hierarchy. Such a realization in terms the Toda lattice hierarchy seems to be as general as the Drinfeld-Sokolov realization.
Resumo:
Supersymmetry is formulated for integrable models based on the sl(2 1) loop algebra endowed with a principal gradation. The symmetry transformations which have half-integer grades generate supersymmetry. The sl(2 1) loop algebra leads to N=2 supersymmetric mKdV and sinh-Gordon equations. The corresponding N=1 mKdV and sinh-Gordon equations are obtained via reduction induced by twisted automorphism. Our method allows for a description of a non-local symmetry structure of supersymmetric integrable models. © 2003 Elsevier B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The soliton spectrum (massive and massless) of a family of integrable models with local U(1) and U(1) ⊗U(1) symmetries is studied. These models represent relevant integrable deformations of SL(2,ℝ) ⊗U(1) n-1-WZW and SL(2,ℝ) ⊗ SL(2,ℝ) ⊗U(1) n-2-WZW models. Their massless solitons appear as specific topological solutions of the U(1)(or U(1) ⊗ U(1)-) CFTs. The nonconformal analog of the GKO-coset formula is derived and used in the construction of the composite massive solitons of the ungauged integrable models. © SISSA/ISAS 2002.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We consider a field theory with target space being the two dimensional sphere S-2 and defined on the space-time S-3 x R. The Lagrangean is the square of the pull-back of the area form on S-2. It is invariant under the conformal group SO(4, 2) and the infinite dimensional group of area preserving diffeomorphisms of S-2. We construct an infinite number of exact soliton solutions with non-trivial Hopf topological charges. The solutions spin with a frequency which is bounded above by a quantity proportional to the inverse of the radius of S-3. The construction of the solutions is made possible by an ansatz which explores the conformal symmetry and a U(1) subgroup of the area preserving diffeomorphism group.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The Lagrangian formalism for the N = 2 supersymmetric sinh-Gordon model with a jump defect is considered. The modified conserved momentum and energy are constructed in terms of border functions. The supersymmetric Backlund transformation is given and an one-soliton solution is obtained.The Lax formulation based on the affine super Lie algebra sl(2, 2) within the space split by the defect leads to the integrability of the model and henceforth to the existence of an infinite number of constants of motion.
Resumo:
We construct static and time-dependent exact soliton solutions with nontrivial Hopf topological charge for a field theory in 3 + 1 dimensions with the target space being the two dimensional sphere S(2). The model considered is a reduction of the so-called extended Skyrme-Faddeev theory by the removal of the quadratic term in derivatives of the fields. The solutions are constructed using an ansatz based on the conformal and target space symmetries. The solutions are said self-dual because they solve first order differential equations which together with some conditions on the coupling constants, imply the second order equations of motion. The solutions belong to a sub-sector of the theory with an infinite number of local conserved currents. The equation for the profile function of the ansatz corresponds to the Bogomolny equation for the sine-Gordon model.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
We propose an approach to the nonvanishing boundary value problem for integrable hierarchies based on the dressing method. Then we apply the method to the AKNS hierarchy. The solutions are found by introducing appropriate vertex operators that takes into account the boundary conditions.
Resumo:
We construct an infinite number of exact time dependent soliton solutions, carrying non-trivial Hopf topological charges, in a 3+1 dimensional Lorentz invariant theory with target space S2. The construction is based on an ansatz which explores the invariance of the model under the conformal group SO(4,2) and the infinite dimensional group of area preserving diffeomorphisms of S2. The model is a rare example of an integrable theory in four dimensions, and the solitons may play a role in the low energy limit of gauge theories. © SISSA 2006.