8 resultados para hygroscopicity

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Climate change and its consequences seem to be increasingly evident in our daily lives. However, is it possible for students to identify a relationship between these large-scale events and the chemistry taught in the classroom? The aim of the present work is to demonstrate that chemistry can assist in elucidating important environmental issues. Simple experiments are used to demonstrate the mechanism of cloud formation, as well as the influence of anthropogenic and natural emissions on the precipitation process. The experiments presented show the way in which particles of soluble salts commonly found in the environment can absorb water in the atmosphere and influence cloud formation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Water sorption isotherms for vacuum-dried persimmon pulp (PP) powder were determined in the temperature range of 20-50C, and the effects of maltodextrin (MD) or gum arabic (GA) addition on the water sorption behavior of the dried powders were analyzed. Several models were evaluated to fit the experimental data and the Guggenheim-Anderson-de Boer model was selected as the most adequate to describe the observed behavior. Addition of encapsulants affected the isotherms: at the same water activity, PP powder with added GA (PP + GA) or MD (PP + MD) presented lower equilibrium water content than pure PP and were less affected by temperature variations. Samples of PP + MD presented lower equilibrium moisture content than those of PP + GA. The isosteric heats of sorption of pulp powders with encapsulants were higher (less negative) than those of PP, suggesting that there are more active polar sites in PP than in pulp powder containing encapsulants.PRACTICAL APPLICATIONSThe choice of persimmon to carry out this work was due to the large persimmon production available in Brazil; moreover, persimmon pulp is rich in vitamin C, vitamin A and iron, as well as in phenolic compounds. Drying of fruit pulps with high sugar content presents technical difficulties because the hygroscopicity and thermoplasticity of the resulting powders when exposed to high temperature and relative humidity. For this reason, addition of high-molar-mass biopolymers, such as maltodextrin or gum arabic, is a strategy to aid drying and to improve storage stability. Knowledge of water sorption isotherms and net isosteric heats of sorption is important to various food processing operations, including drying, storage and packaging. They are useful in calculating time and energy consumptions during drying, modeling moisture changes during storage and predicting shelf life of food products.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, the influence on optical properties of alkali halides such as CsCl in a covalent glassy matrix has been investigated. Chalcogenide glasses belonging to the (GeS2)-(Ga2S3)-CsCI system with high ratio of CsCl present an entire transparency in the visible range. These glasses maintain good transmission up to 12 mu m. Furthermore, the thermo-mechanical properties and the glass hygroscopicity have been investigated as function of the CsCl amount. This new generation of glasses presents a great interest for optical application. They could be used both for passive applications (multi-spectral imaging) and active applications for rare-earth doping due to their good transmission in the visible range, increasing optical pumping possibilities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Strong diurnal cycles in ambient aerosol mass were observed in a rural region of Southeast Brazil where the trace composition of the lower troposphere is governed mainly by emissions from agro-industry. An optical particle counter was used to record size-segregated aerosol number concentrations between 13 May 2010 and 15 March 2011. The data were collected every 10 min and used to calculate aerosol mass concentrations. Aerosol samples were also collected onto filters during daytime (10:00-16:00 local time) and nighttime (20:00-06:00) periods, for subsequent analysis of soluble ions and water-soluble organic carbon. Biomass burning aerosols predominated during the dry winter, while secondary aerosols were most important in the summer rainy season. In both seasons, diurnal cycles in calculated aerosol mass concentrations were due to the uptake of water by the aerosols and, to a lesser extent, to emissions and secondary aerosol formation. In neither season could the observed mass changes be explained by changes in the depth of the boundary layer. In the summer, nighttime increases in aerosol mass ranged from 2.7-fold to 81-fold, depending on particle size, while in the winter, the range was narrower, from 2.2-fold to 9.5-fold, supporting the possibility that the presence of particles derived from biomass burning reduced the overall ability of the aerosols to absorb water. Key Points Diurnal cycle of agro-industrial aerosol mass governed by humidity Biomass burning emissions act to suppress particle growth Need to consider diurnal mass cycles in aerosol dry deposition models ©2013. American Geophysical Union. All Rights Reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)