39 resultados para funzioni wavelet applicazioni scientifiche

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ionospheric effect is one of the major errors in GPS data processing over long baselines. As a dispersive medium, it is possible to compute its influence on the GPS signal with the ionosphere-free linear combination of L1 and L2 observables, requiring dual-frequency receivers. In the case of single-frequency receivers, ionospheric effects are either neglected or reduced by using a model. In this paper, an alternative for single-frequency users is proposed. It involves multiresolution analysis (MRA) using a wavelet analysis of the double-difference observations to remove the short- and medium-scale ionosphere variations and disturbances, as well as some minor tropospheric effects. Experiments were carried out over three baseline lengths from 50 to 450 km, and the results provided by the proposed method were better than those from dual-frequency receivers. The horizontal root mean square was of about 0.28 m (1 sigma).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The wavelet transform is used to reduce the high frequency multipath of pseudorange and carrier phase GPS double differences (DDs). This transform decomposes the DD signal, thus separating the high frequencies due to multipath effects. After the decomposition, the wavelet shrinkage is performed by thresholding to eliminate the high frequency component. Then the signal can be reconstructed without the high frequency component. We show how to choose the best threshold. Although the high frequency multipath is not the main multipath error component, its correction provides improvements of about 30% in pseudorange average residuals and 24% in carrier phases. The results also show that the ambiguity solutions become more reliable after correcting the high frequency multipath.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wavelet functions have been used as the activation function in feedforward neural networks. An abundance of R&D has been produced on wavelet neural network area. Some successful algorithms and applications in wavelet neural network have been developed and reported in the literature. However, most of the aforementioned reports impose many restrictions in the classical backpropagation algorithm, such as low dimensionality, tensor product of wavelets, parameters initialization, and, in general, the output is one dimensional, etc. In order to remove some of these restrictions, a family of polynomial wavelets generated from powers of sigmoid functions is presented. We described how a multidimensional wavelet neural networks based on these functions can be constructed, trained and applied in pattern recognition tasks. As an example of application for the method proposed, it is studied the exclusive-or (XOR) problem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oropharyngeal dysphagia is characterized by any alteration in swallowing dynamics which may lead to malnutrition and aspiration pneumonia. Early diagnosis is crucial for the prognosis of patients with dysphagia, and the best method for swallowing dynamics assessment is swallowing videofluoroscopy, an exam performed with X-rays. Because it exposes patients to radiation, videofluoroscopy should not be performed frequently nor should it be prolonged. This study presents a non-invasive method for the pre-diagnosis of dysphagia based on the analysis of the swallowing acoustics, where the discrete wavelet transform plays an important role to increase sensitivity and specificity in the identification of dysphagic patients. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work presents an analysis of the wavelet-Galerkin method for one-dimensional elastoplastic-damage problems. Time-stepping algorithm for non-linear dynamics is presented. Numerical treatment of the constitutive models is developed by the use of return-mapping algorithm. For spacial discretization we can use wavelet-Galerkin method instead of standard finite element method. This approach allows to locate singularities. The discrete formulation developed can be applied to the simulation of one-dimensional problems for elastic-plastic-damage models. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Function approximation is a very important task in environments where computation has to be based on extracting information from data samples in real world processes. Neural networks and wavenets have been recently seen as attractive tools for developing efficient solutions for many real world problems in function approximation. In this paper, it is shown how feedforward neural networks can be built using a different type of activation function referred to as the PPS-wavelet. An algorithm is presented to generate a family of PPS-wavelets that can be used to efficiently construct feedforward networks for function approximation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A combined wavelet-element free Galerkin (EFG) method is proposed for solving electromagnetic EM) field problems. The bridging scales are used to preserve the consistency and linear independence properties of the entire bases. A detailed description of the development of the discrete model and its numerical implementations is given to facilitate the reader to. understand the proposed algorithm. A numerical example to validate the proposed method is also reported.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main purpose of this paper is to investigate theoretically and experimentally the use of family of Polynomial Powers of the Sigmoid (PPS) Function Networks applied in speech signal representation and function approximation. This paper carries out practical investigations in terms of approximation fitness (LSE), time consuming (CPU Time), computational complexity (FLOP) and representation power (Number of Activation Function) for different PPS activation functions. We expected that different activation functions can provide performance variations and further investigations will guide us towards a class of mappings associating the best activation function to solve a class of problems under certain criteria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper adresses the problem on processing biological data such as cardiac beats, audio and ultrasonic range, calculating wavelet coefficients in real time, with processor clock running at frequency of present ASIC's and FPGA. The Paralell Filter Architecture for DWT has been improved, calculating wavelet coefficients in real time with hardware reduced to 60%. The new architecture, which also processes IDWT, is implemented with the Radix-2 or the Booth-Wallace Constant multipliers. Including series memory register banks, one integrated circuit Signal Analyzer, ultrasonic range, is presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper addresses the problem of processing biological data, such as cardiac beats in the audio and ultrasonic range, and on calculating wavelet coefficients in real time, with the processor clock running at a frequency of present application-specified integrated circuits and field programmable gate array. The parallel filter architecture for discrete wavelet transform (DWT) has been improved, calculating the wavelet coefficients in real time with hardware reduced up to 60%. The new architecture, which also processes inverse DWT, is implemented with the Radix-2 or the Booth-Wallace constant multipliers. One integrated circuit signal analyzer in the ultrasonic range, including series memory register banks, is presented. © 2007 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a method to enhance microcalcifications and classify their borders by applying the wavelet transform. Decomposing an image and removing its low frequency sub-band the microcalcifications are enhanced. Analyzing the effects of perturbations on high frequency subband it's possible to classify its borders as smooth, rugged or undefined. Results show a false positive reduction of 69.27% using a region growing algorithm. © 2008 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To ensure high accuracy results from GPS relative positioning, the multipath effects have to be mitigated. Although the careful selection of antenna site and the use of especial antennas and receivers can minimize multipath, it cannot always be eliminated and frequently the residual multipath disturbance remains as the major error in GPS results. The high-frequency multipath from large delays can be attenuated by double difference (DD) denoising methods. But the low-frequency multipath from short delays is very difficult to be reduced or modeled. In this paper, it is proposed a method based on wavelet regression (WR), which can effectively detect and reduce the low-frequency multipath. The wavelet technique is firstly applied to decompose the DD residuals into the low-frequency bias and high-frequency noise components. The extracted bias components by WR are then directly applied to the DD observations to correct them from the trend. The remaining terms, largely characterized by the high-frequency measurement noise, are expected to give the best linear unbiased solutions from a least-squares (LS) adjustment. An experiment was carried out using objects placed close to the receiver antenna to cause, mainly, low-frequency multipath. The data were collected for two days to verify the multipath repeatability. The ground truth coordinates were computed with data collected in the absence of the reflector objects. The coordinates and ambiguity solution were compared with and without the multipath mitigation using WR. After mitigating the multipath, ambiguity resolution became more reliable and the coordinates were more accurate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Breast cancer is the most common cancer among women. In CAD systems, several studies have investigated the use of wavelet transform as a multiresolution analysis tool for texture analysis and could be interpreted as inputs to a classifier. In classification, polynomial classifier has been used due to the advantages of providing only one model for optimal separation of classes and to consider this as the solution of the problem. In this paper, a system is proposed for texture analysis and classification of lesions in mammographic images. Multiresolution analysis features were extracted from the region of interest of a given image. These features were computed based on three different wavelet functions, Daubechies 8, Symlet 8 and bi-orthogonal 3.7. For classification, we used the polynomial classification algorithm to define the mammogram images as normal or abnormal. We also made a comparison with other artificial intelligence algorithms (Decision Tree, SVM, K-NN). A Receiver Operating Characteristics (ROC) curve is used to evaluate the performance of the proposed system. Our system is evaluated using 360 digitized mammograms from DDSM database and the result shows that the algorithm has an area under the ROC curve Az of 0.98 ± 0.03. The performance of the polynomial classifier has proved to be better in comparison to other classification algorithms. © 2013 Elsevier Ltd. All rights reserved.