128 resultados para functional group diversity
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Geociências e Meio Ambiente - IGCE
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This study aimed to analyze the species composition and functional groups of the ant community and to assess the efficiency of two sampling methods, pitfall and leaf litter sampling, in an urban park. A total of 1,401 ants were collected, which belonged to six subfamilies and 36 species. The predominant species was Wasmannia auropunctata (present in 45.36% of the samples), while the functional group of opportunistic ants were the most frequent (present in 83.75% of the samples) and abundant (95.29% of the total collected specimens) functional group. The Jaccard Similarity Index showed a low similarity between the two sampling methods, as the difference of the number of individuals for each species between these two methods was not significant in only one case (Linepithema sp. 1, p = 0.4561). The fungus-growing and cryptic ants were more collected in leaflitter samples (p<0.0001; p = 0.0348 respectively). Although there was no significant difference (p = 0.6397) between the two sampling methods for the total individuals of opportunistic ants, more species of this group were collected in pitfall traps. This difference was not significant because of the high presence of W. auropunctata, an opportunistic ant, in samples of leaf litter. Due to the predominance of tramp ants in the studied area, this article illustrates the importance of green urban areas in ant control strategies, since these sites could be used as a source of new colonization for these ants. Furthermore, the combination of the two sampling methods seems to be complementary for obtaining a more complete picture of the ant community.
Resumo:
A mercury-sensitive chemically modified electrode (CME) based on modified silica gel-containing carbon paste was developed. The functional group attached to the silica gel surface was 3-(2-thiobenzimidazolyl)propyl, which is able to complex mercury ions. This electrode was applied to the determination of mercury(II) ions in aqueous solution. The mercury was chemically preconcentrated on the CME prior to voltammetric determination by anodic stripping in the differential-pulse mode. A calibration graph covering the concentration range from 0.08 to 2 mg l-1 was constructed. The precision for six determinations of 0.122 and 0.312 mg l-1 Hg(II) was 3.2 and 2.9% (relative standard deviation), respectively. The detection limit for a 5-min preconcentration period was 0.013 mg l-1. A study for foreign ions was also made.
Resumo:
Porphyrin was incorporated in a silicate network, via a covalent bond, by grafting a functional group with 3-aminopropyltriethoxysilane, using a sol-gel process. We have carried out the synthesis and measured the absorption spectra, nuclear magnetic resonance spectra, infrared (IR) spectra, luminescence spectra and lifetime of these hybrid silicates, porphyrinosilicas. These samples contained the following free-base porphyrins: meso-tetrakis-p-chlorobenzoylporphyrin, meso-tetrakis-2,6-dichloro-3-chlorosulfonylphenylporphyrin. The obtained porphyrinosilicas have similar absorption and luminescence spectra to the free base porphyrins in solution. IR spectra confirm the formation of monomeric species. Lifetime measurement for porphyrinosilica reveals that 32% +/- 2% of porphyrin is covalently bonded to the silica network. (C) 1999 Elsevier B.V. B.V. All rights reserved.
Resumo:
In this work, a hydrophilic clay, Na-montmorillonite from Wyoming, USA, was rendered organophilic by exchanging the inorganic interlayer cations for hexaclecyltrimethylammonium ions (HDTA), with the formulae of [(CH3)(3)N(C16H33)](+) ion. Based on fact that organo-clay has high affinities for non-ionic organic molecules, 1,3,4-thiadiazole-2,5-dithiol was loaded oil the HDTA-montmorillonite surface, resulting in the 1,3,4-thiadiazole-2,5-dithiol-HDTA-montmorillonite complex (TDD-organo-clay).The following properties of TDD-organo-clay are discussed: selective adsorption of heavy metal ions measured by batch and chromatographic column techniques, and utilization as preconcentration agent in a chemically modified carbon paste electrode (CMCPE) for determination of mercury(II).The main point of this paper is the construction of a selective sensor, a carbon paste electrode modified with TDD-organo-clay, its properties and its application to the determination of mercury(II) ions, as this element belongs to the most toxic metals. The chemical selectivity of this functional group and the selectivity of voltammetry were combined for preconcentration and determination. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
A critical revision of literature as regards to the drug stability in the presence of surfactants were realized. The functional groups envolved in the drug decomposition were used to the development of the discussion. The analysis indicated that the detergent effect can be used to control the rates and mechanisms of drug decomposition and to obtain specific information about the drug reactivity in the environment of pharmacological action.
Resumo:
A mercury-sensitive chemically modified graphite paste electrode was constructed by incorporating modified silica gel into a conventional graphite paste electrode. The functional group attached to the (3-chloropropyl) silica gel surface was 2-mercaptoimidazole, giving a new product denoted by 3-(2-thioimidazolyl)propyl silica gel, which is able to complex mercury ions. Mercury was chemically adsorbed on the modified graphite paste electrode containing 3-(2-thioimidazolyl)propyl silica (TIPSG GPE) by immersion in a Hg(II) solution, and the resultant surface was characterized by cyclic and differential pulse anodic stripping voltammetry. One cathodic peak at 0.1 V and other anodic peak at 0.34 V were observed on scanning the potential from -0.1 to 0.8 V (0.01 M KNO3; ν = 2.0 mV s-1 νs. Ag/AgCl). The anodic peak at 0.34 V show an excellent sensitivity for Hg(II) ions in the presence of several foreign ions. A calibration graph covering the concentration range from 0.02 to 2 mg L-1 was obtained. The detection limit was estimated to be 5 μg L-1. The precision for six determinations of 0.05 and 0.26 mg L-1 Hg(II) was 3.0 and 2.5% (relative standard deviation), respectively. The method can be used to determine the concentration of mercury(II) in natural waters contaminated by this metal. 2005 © The Japan Society for Analytical Chemistry.