50 resultados para explosion mechanics
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Steam explosion process is employed for the successful extraction of cellulose nanofibrils from pineapple leaf fibres for the first time. Steam coupled acid treatment on the pineapple leaf fibres is found to be effective in the depolymerization and defibrillation of the fibre to produce nanofibrils of these fibres. The chemical constituents of the different stages of pineapple fibres undergoing treatment were analyzed according to the ASTM standards. The crystallinity of the fibres is examined from the XRD analysis. Characterization of the fibres by SEM. AFM and TEM supports the evidence for the successful isolation of nanofibrils from pineapple leaf. The developed nanocellulose promises to be a very versatile material having the wide range of biomedical applications and biotechnological applications, such as tissue engineering, drug delivery, wound dressings and medical implants. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
In this work, cellulose nanofibers were extracted from banana fibers via a steam explosion technique. The chemical composition, morphology and thermal properties of the nanofibers were characterized to investigate their suitability for use in bio-based composite material applications. Chemical characterization of the banana fibers confirmed that the cellulose content was increased from 64% to 95% due to the application of alkali and acid treatments. Assessment of fiber chemical composition before and after chemical treatment showed evidence for the removal of non-cellulosic constituents such as hemicelluloses and lignin that occurred during steam explosion, bleaching and acid treatments. Surface morphological studies using SEM and AFM revealed that there was a reduction in fiber diameter during steam explosion followed by acid treatments. Percentage yield and aspect ratio of the nanofiber obtained by this technique is found to be very high in comparison with other conventional methods. TGA and DSC results showed that the developed nanofibers exhibit enhanced thermal properties over the untreated fibers. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Orthogonality criterion is used to show in a very simple and general way that anomalous bound-state solutions for the Coulomb potential (hydrino states) do not exist as bona fide solutions of the Schrodinger, Klein-Gordon and Dirac equations. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
We present a new method to construct the exactly solvable PT-symmetric potentials within the framework of the position-dependent effective mass Dirac equation with the vector potential coupling scheme in 1 + 1 dimensions. In order to illustrate the procedure, we produce three PT-symmetric potentials as examples, which are PT-symmetric harmonic oscillator-like potential, PT-symmetric potential with the form of a linear potential plus an inversely linear potential, and PT-symmetric kink-like potential, respectively. The real relativistic energy levels and corresponding spinor components for the bound states are obtained by using the basic concepts of the supersymmetric quantum mechanics formalism and function analysis method. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In the last decades, the study of nonlinear one dimensional lattices has attracted much attention of the scientific community. One of these lattices is related to a simplified model for the DNA molecule, allowing to recover experimental results, such as the denaturation of DNA double helix. Inspired by this model we construct a Hamiltonian for a reflectionless potential through the Supersymmetric Quantum Mechanics formalism, SQM. Thermodynamical properties of such one dimensional lattice are evaluated aming possible biological applications.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Many years ago Zel'dovich showed how the Lagrange condition in the theory of differential equations can be utilized in the perturbation theory of quantum mechanics. Zel'dovich's method enables us to circumvent the summation over intermediate states. As compared with other similar methods, in particular the logarithmic perturbation expansion method, we emphasize that this relatively unknown method of Zel'dovich has a remarkable advantage in dealing with excited stares. That is, the ground and excited states can all be treated in the same way. The nodes of the unperturbed wavefunction do not give rise to any complication.
Resumo:
It is known that there is a four-parameter family of point interactions in one-dimensional quantum mechanics. We point out that, as far as physics is concerned, it is sufficient to use three of the four parameters. The fourth parameter is redundant. The apparent violation of time-reversal invariance in the presence of the fourth parameter is an artifact.
Resumo:
We propose a framework to renormalize the nonrelativistic quantum mechanics with arbitrary singular interactions. The scattering equation is written to have one or more subtraction in the kernel at a given energy scale. The scattering amplitude is the solution of a nth order derivative equation in respect to the renormalization scale, which is the nonrelativistic counterpart of the Callan-Symanzik formalism, Scaled running potentials for the subtracted equations keep the physics invariant fur a sliding subtraction point. An example of a singular potential, that requires more than one subtraction to renormalize the theory is shown. (C) 2000 Published by Elsevier B.V. B.V. All rights reserved.