90 resultados para electromechanical impedance
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
This article presents a new method to detect damage in structures based on the electromechanical impedance principle. The system follows the variations in the output voltage of piezoelectric transducers and does not compute the impedance itself. The proposed system is portable, autonomous, versatile, and could efficiently replace commercial instruments in different structural health monitoring applications. The identification of damage is performed by simply comparing the variations of root mean square voltage from response signals of piezoelectric transducers, such as lead zirconate titanate patches bonded to the structure, obtained for different frequencies of the excitation signal. The proposed system is not limited by the sampling rate of analog-to-digital converters, dispenses Fourier transform algorithms, and does not require a computer for processing, operating autonomously. A low-cost prototype based on microcontroller and digital synthesizer was built, and experiments were carried out on an aluminum structure and excellent results have been obtained. © The Author(s) 2012.
Resumo:
This paper presents a novel time domain approach for Structural Health Monitoring (SHM) systems based on Electromechanical Impedance (EMI) principle and Principal Component Coefficients (PCC), also known as loadings. Differently of typical applications of EMI applied to SHM, which are based on computing the Frequency Response Function (FRF), in this work the procedure is based on the EMI principle but all analysis is conducted directly in time-domain. For this, the PCC are computed from the time response of PZT (Lead Zirconate Titanate) transducers bonded to the monitored structure, which act as actuator and sensor at the same time. The procedure is carried out exciting the PZT transducers using a wide band chirp signal and getting their time responses. The PCC are obtained in both healthy and damaged conditions and used to compute statistics indexes. Tests were carried out on an aircraft aluminum plate and the results have demonstrated the effectiveness of the proposed method making it an excellent approach for SHM applications. Finally, the results using EMI signals in both frequency and time responses are obtained and compared. © The Society for Experimental Mechanics 2014.
Resumo:
The electromechanical impedance (EMI) technique has been successfully used in structural health monitoring (SHM) systems on a wide variety of structures. The basic concept of this technique is to monitor the structural integrity by exciting and sensing a piezoelectric transducer, usually a lead zirconate titanate (PZT) wafer bonded to the structure to be monitored and excited in a suitable frequency range. Because of the piezoelectric effect, there is a relationship between the mechanical impedance of the host structure, which is directly related to its integrity, and the electrical impedance of the PZT transducer, obtained by a ratio between the excitation and the sensing signals.This work presents a study on damage (leaks) detection using EMI based method. Tests were carried out in a rig water system built in a Hydraulic Laboratory for different leaks conditions in a metallic pipeline. Also, it was evaluated the influence of the PZT position bonded to the pipeline. The results show that leaks can effectively be detected using common metrics for damage detection such as RMSD and CCDM. Further, it was observed that the position of the PZT bonded to the pipes is an important variable and has to be controlled.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
In this paper we present a versatile and easy-to-assemble measurement system for structural health monitoring (SHM) based on the electromechanical impedance (EMI) technique. The hardware of the proposed system consists only of a common data acquisition (DAQ) device with external resistors and allows real-time data acquisition from multiple sensors. Besides the low-cost compared to conventional impedance analyzers, the hardware and the software are simple and easier to implement than other measurement systems that have been recently proposed.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper presents a new approach for damage detection in Structural Health Monitoring (SHM) systems, which is based on the Electromechanical Impedance (EMI) principle and Autoregressive (AR) models. Typical applications of EMI in SHM are based on computing the Frequency Response Function (FRF). In this work the procedure is based on the EMI principle but the results are determined through the coefficients of AR models, which are computed from the time response of PZT transducers bonded to the monitored structure, and acting as actuator and sensors at the same time. The procedure is based on exciting the PZT transducers using a wide band chirp signal and getting its time response. The AR models are obtained in both healthy and damaged conditions and used to compute statistics indexes. Practical tests were carried out in an aluminum plate and the results have demonstrated the effectiveness of the proposed method. © 2012 IEEE.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)