216 resultados para electromechanical actuators

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes an electronic device conceived to convert common web texts into sequences of corresponding Braille signals, which are immediately reproduced onto an array ( keyboard) of electromechanical actuators. These actuators are reconfigurable in real time, displaying the Braille characters as matrices of points composed by small stems which can be lowered or raised according to the Braille code. The device, together with its conversion software package, can provide direct access to web texts in any personal computer, thus avoiding the use of complicated Braille printers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Smart material technology has become an area of increasing interest for the development of lighter and stronger structures that are able to incorporate actuator and sensor capabilities for collocated control. In the design of actively controlled structures, the determination of the actuator locations and the controller gains is a very important issue. For that purpose, smart material modeling, modal analysis methods, and control and optimization techniques are the most important ingredients to be taken into account. The optimization problem to be solved in this context presents two interdependent aspects. The first is related to the discrete optimal actuator location selection problem, which is solved in this paper using genetic algorithms. The second is represented by a continuous variable optimization problem, through which the control gains are determined using classical techniques. A cantilever Euler-Bernoulli beam is used to illustrate the presented methodology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bolted joints are a form of mechanical coupling largely used in machinery due to their reliability and low cost. Failure of bolted joints can lead to catastrophic events, such as leaking, train derailments, aircraft crashes, etc. Most of these failures occur due to the reduction of the pre-load, induced by mechanical vibration or human errors in the assembly or maintenance process. This article investigates the application of shape memory alloy (SMA) washers as an actuator to increase the pre-load on loosened bolted joints. The application of SMA washer follows a structural health monitoring procedure to identify a damage (reduction in pre-load) occurrence. In this article, a thermo-mechanical model is presented to predict the final pre-load achieved using this kind of actuator, based on the heat input and SMA washer dimension. This model extends and improves on the previous model of Ghorashi and Inman [2004, "Shape Memory Alloy in Tension and Compression and its Application as Clamping Force Actuator in a Bolted Joint: Part 2 - Modeling," J. Intell. Mater. Syst. Struct., 15:589-600], by eliminating the pre-load term related to nut turning making the system more practical. This complete model is a powerful but complex tool to be used by designers. A novel modeling approach for self-healing bolted joints based on curve fitting of experimental data is presented. The article concludes with an experimental application that leads to a change in joint assembly to increase the system reliability, by removing the ceramic washer component. Further research topics are also suggested.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Composite made of Lead Zirconate Titranate (PZT) ceramic powder and castor oil based polyurethane (PU) were prepared in the thin film form with 0-3 connectivity by spin coating. The composite films were obtained in the thickness range of 100 mum to 300 mum using 33-vol.% of ceramic. The samples mechanical resistance. The material was characterised by dielectric spectroscopy, thermally stimulated discharge current (TSDC), hysteresis measurements and laser-intensity-modulation method (LIMM). The pyroelectric coefficient at 343 K was 7x10(-5) C.m(-2) K-1 for the sample poled with 10 MV/m at 373 K for Ih. The results show that this new composite can be used as suitable piezo and pyroelectric sensors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Piezoresponse Force Microscopy (PFM) is used to characterize the nanoscale electromechanical properties of centrosymmetric CaCu3Ti4O12 ceramics with giant dielectric constant. Clear PFM contrast both in vertical (out-of-plane) and lateral (in-plane) modes is observed on the ceramic surface with varying magnitude and polarization direction depending on the grain crystalline orientation. Lateral signal changes its sign upon 180 degrees rotation of the sample thus ruling out spurious electrostatic contribution and confirming piezoelectric nature of the effect. Piezoresponse could be locally reversed by suitable electrical bias (local poling) and induced polarization was quite stable showing long-time relaxation (similar to 3 hrs). The electromechanical contrast in unpoled ceramics is attributed to the surface flexoelectric effect (strain gradient induced polarization) while piezoresponse hysteresis and ferroelectric-like behavior are discussed in terms of structural instabilities due to Ti off-center displacements and structural defects in this material. (C) 2011 American Institute of Physics. [doi:10.1063/1.3623767]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CaBi4Ti4O15 (CBTi144) thin films were evaluated for use as lead-free thin-film piezoelectrics in microelectromechanical systems. The films were grown by the polymeric precursor method on (100)Pt/Ti/SiO2/Si substrates. The a/b-axis orientation of the ferroelectric film is considered to be associated with the preferred orientation of the Pt bottom electrode. The P-r and E-c were 14 mu C/cm(2) and 64 kV/cm, respectively, for a maximum applied field of 400 kV/cm. The domain structure was investigated by piezoresponse force microscopy. The film has a piezoelectric coefficient, d(33), equal to 60 pm/V and a current density of 0.7 mA/cm(2).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The deconvolution of the voltammograms of polypyrrole electrochemistry has proved to be possible through the electrochemical quartz crystal microbalance data using the F(dm/dQ) function. This deconvolution allows the evolution of the thickness of the polypyrrole films during their redox processes to be estimated and therefore, the mechanical contraction/decontraction of this polymer as a function of the ionic exchange processes can be evaluated. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An important stage in the solution of active vibration control in flexible structures is the optimal placement of sensors and actuators. In many works, the positioning of these devices in systems governed for parameter distributed is, mainly, based, in controllability approach or criteria of performance. The positions that enhance such parameters are considered optimal. These techniques do not take in account the space variation of disturbances. An way to enhance the robustness of the control design would be to locate the actuators considering the space distribution of the worst case of disturbances. This paper is addressed to include in the formulation of problem of optimal location of sensors and piezoelectric actuators the effect of external disturbances. The paper concludes with a numerical simulation in a truss structure considering that the disturbance is applied in a known point a priori. As objective function the C norm system is used. The LQR (Linear Quadratic Regulator) controller was used to quantify performance of different sensors/actuators configurations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study of algorithms for active vibrations control in flexible structures became an area of enormous interest, mainly due to the countless demands of an optimal performance of mechanical systems as aircraft, aerospace and automotive structures. Smart structures, formed by a structure base, coupled with piezoelectric actuators and sensor are capable to guarantee the conditions demanded through the application of several types of controllers. The actuator/sensor materials are composed by piezoelectric ceramic (PZT - Lead Zirconate Titanate), commonly used as distributed actuators, and piezoelectric plastic films (PVDF-PolyVinyliDeno Floride), highly indicated for distributed sensors. The design process of such system encompasses three main phases: structural design; optimal placement of sensor/actuator (PVDF and PZT); and controller design. Consequently, for optimal design purposes, the structure, the sensor/actuator placement and the controller have to be considered simultaneously. This article addresses the optimal placement of actuators and sensors for design of controller for vibration attenuation in a flexible plate. Techniques involving linear matrix inequalities (LMI) to solve the Riccati's equation are used. The controller's gain is calculated using the linear quadratic regulator (LQR). The major advantage of LMI design is to enable specifications such as stability degree requirements, decay rate, input force limitation in the actuators and output peak bounder. It is also possible to assume that the model parameters involve uncertainties. LMI is a very useful tool for problems with constraints, where the parameters vary in a range of values. Once formulated in terms of LMI a problem can be solved efficiently by convex optimization algorithms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The recent years have seen the appearance of innovative system for acoustic and vibration attenuation, most of them integrating new actuator technologies. In this sense, the study of algorithms for active vibrations control in rotating machinery became an area of enormous interest, mainly due to countless demands of an optimal performance of mechanical systems in aircraft, aerospace and automotive structures. In this way, this paper presents an approach that is numerically verified for active vibration control in a rotor using Active Magnetic Bearings (AMB). The control design in a discrete state-space formulation is carried out through feedback technique and Linear Matrix Inequalities (LMI) approach. LMI is useful for system with uncertainties. The AMB uses electromagnetic forces to support a rotor without mechanical contact. By monitoring the position of the shaft and changing the dynamics of the system accordingly, the AMB keeps the rotor in a desired position. This unique feature has broadened for the applications of AMB and now they can be considered not only as a main support bearing in a machine but also as dampers for vibration control and force actuators. © 2009 Society for Experimental Mechanics Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article presents a new method to detect damage in structures based on the electromechanical impedance principle. The system follows the variations in the output voltage of piezoelectric transducers and does not compute the impedance itself. The proposed system is portable, autonomous, versatile, and could efficiently replace commercial instruments in different structural health monitoring applications. The identification of damage is performed by simply comparing the variations of root mean square voltage from response signals of piezoelectric transducers, such as lead zirconate titanate patches bonded to the structure, obtained for different frequencies of the excitation signal. The proposed system is not limited by the sampling rate of analog-to-digital converters, dispenses Fourier transform algorithms, and does not require a computer for processing, operating autonomously. A low-cost prototype based on microcontroller and digital synthesizer was built, and experiments were carried out on an aluminum structure and excellent results have been obtained. © The Author(s) 2012.