50 resultados para dorsal hippocampus

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We evaluated the involvement of dorsal hippocampus (DH) 5-HT1A receptors in the mediation of the behavioral effects caused by the pharmacological manipulation of 5-HT neurons in the median raphe nucleus (MRN). To this end, we used the rat elevated T-maze test of anxiety. The results showed that intra-DH injection of the 5-HT1A/7 agonist 8-OH-DPAT facilitated inhibitory avoidance, an anxiogenic effect, without affecting escape. Microinjection of the 5-HT1A antagonist WAY-100635 was ineffective. In the elevated T-maze, inhibitory avoidance and escape have been related to generalized anxiety and panic disorders, respectively. Intra-MRN administration of the excitatory aminoacid kainic acid, which non-selectively stimulates 5-HT neurons in this brain area facilitated inhibitory avoidance and impaired escape performance, but also affected locomotion. Intra-MRN injection of WAY-100635, which has a disinhibitory effect on the activity of 5-HT neurons in this midbrain area, only facilitated inhibitory avoidance. Preadministration of WAY-100635 into the DH blocked the behavioral effect of intra-MRN injection of WAY-100635, but not of kainic acid. These results indicate that DH 5-HT1A receptors mediate the anxiogenic effect induced by the selective stimulation of 5-HT neurons in the MRN. (c) 2007 Elsevier B.V. and ECNP. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Serotonin (5-HT) can either increase or decrease anxiety-like behaviour in animals, actions that depend upon neuroanatomical site of action and 5-HT receptor subtype. Although systemic studies with 5-HT(2) receptor agonists and antagonists suggest a facilitatory role for this receptor subtype in anxiety, somewhat inconsistent results have been obtained when such compounds have been directly applied to limbic targets such as the hippocampus and amygdala. The present study investigated the effects of the 5-HT(2B/2C) receptor agonist mCPP bilaterally microinjected into the dorsal hippocampus (DH: 0, 0.3 1.0 or 3.0 nmol/0.2 mu l), the ventral hippocampus (VH: 0, 0.3, 1.0 or 3.0 nmol/0.2 mu l) or the amygdaloid complex (0, 0.15, 0.5, 1.0 or 3.0 nmol/0.1 mu l) in mice exposed to the elevated plus-maze (EPM). Test sessions were videotaped and subsequently scored for conventional indices of anxiety (percentage of open arm entries and percentage of open arm time) and locomotor activity (closed arm entries). Results showed that mCPP microinfusions into the DH or VH failed to affect any behavioural measure in the EPM. However, when injected into the amygdaloid complex, the dose of 1.0 nmol of this 5HT(2B/2C) receptor agonist increased behavioural indices of anxiety without significantly altering general activity levels. This anxiogenic-like effect of mCPP was selectively and completely blocked by local injection of a behaviourally-inactive dose of SDZ SER-082 (10 nmol/0.1 mu l), a preferential 5-HT(2C) receptor antagonist. These data suggest that 5HT(2C) receptors located within the amygdaloid complex (but not the dorsal or ventral hippocampus) play a facilitatory role in plus-maze anxiety in mice. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The positive profile of systemically-administered 5-HT(1A) receptor antagonists in several rodent models of anxiolytic activity suggests an important role for postsynaptic 5-HT(1A) receptor mechanisms in anxiety. To test this hypothesis, we investigated the effects of WAY-100635 microinfusions (0, 0.1, 1.0 or 3.0 mug in 0.2 mul) into the dorsal (DH) or ventral (VH) hippocampus an behaviours displayed by male Swiss-Webster mice in the elevated plus-maze. As prior experience is known to modify pharmacological responses in this test, the effects of intra-hippocampal infusions were examined both in maze-naive and maze-experienced subjects. Test videotapes were scored for conventional indices of anxiety (% open arm entries/time) and locomotor activity (closed arm entries), as well as a range of ethological measures (e.g. risk assessment). In maze-naive mice, intra-VH (but not intra-M) infusions of WAY-100635 (3.0 mug but not lower doses) increased open arm exploration and reduced risk assessment. These effects were observed in the absence of significant changes in locomotor activity. In contrast, neither intra-VH nor intra-DH infusions of WAY-100635 altered the behaviour of maze-experienced mice. These Findings suggest that postsynaptic 5-HT(1A) receptors in the ventral (but not dorsal) hippocampus play a significant role both in the mediation of plus-maze anxiety in mice and in experientially-induced alterations in responses to this test. (C) 2002 Elsevier B.V. BY All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

There are conflicting results on the function of 5-HT in anxiety and depression. To reconcile this evidence, Deakin and Graeff have suggested that the ascending 5-HT pathway that originates in the dorsal raphe nucleus (DRN) and innervates the amygdala and frontal cortex facilitates conditioned fear, while the DRN-periventricular pathway innervating the periventricular and periaqueductal gray matter inhibits inborn fight/flight reactions to impending danger, pain, or asphyxia. To study the role of the DRN 5-HT system in anxiety, we microinjected 8-OH-DPAT into the DRN to inhibit 5 HT release. This treatment impaired inhibitory avoidance (conditioned fear) without affecting one-way escape (unconditioned fear) in the elevated T-maze, a new animal model of anxiety. We also applied three drug treatments that increase 5-HT release from DRN terminals: 1) intra-DRN microinjection of the benzodiazepine inverse agonist FG 4172, 2) intra-DRN microinjection of the excitatory amino acid kainic acid, and 3) intraperitoneal injection of the 5-HT releaser and uptake blocker D-fenfluramine. All treatments enhanced inhibitory avoidance in the T-maze. D-Fenfluramine and intra-DRN kainate also decreased one-way escape. In healthy volunteers, D-fenfluramine and the 5-HT agonist mCPP (mainly 5-HT2C) increased, while the antagonists ritanserin (5-HT2A/(2C)) and SR 46349B (5-HT2A) decreased skin conductance responses to an aversively conditioned stimulus (tone). In addition, D-fenfluramine decreased, whereas ritanserin increased subjective anxiety induced by simulated public speaking, thought to represent unconditioned anxiety. Overall, these results are compatible with the above hypothesis. Deakin and Graeff have suggested that the pathway connecting the median raphe nucleus (MRN) to the dorsal hippocampus promotes resistance to chronic, unavoidable stress. In the present study, we found that 24 h after electrolytic lesion of the rat MRN glandular gastric ulcers occurred, and the immune response to the mitogen concanavalin A was depressed. Seven days after the same lesion, the ulcerogenic effect of restraint was enhanced. Microinjection of 8-OH-DPAT, the nonselective agonist 5-MeO-DMT, or the 5-HT uptake inhibitor zimelidine into the dorsal hippocampus immediately after 2 h of restraint reversed the deficits of open arm exploration in the elevated plus-maze, measured 24 h after restraint. The effect of the two last drugs was antagonized by WAY-100135, a selective 5-HT1A receptor antagonist. These results are compatible with the hypothesis that the MRN-dorsal hippocampus 5-HT system attenuates stress by facilitation of hippocampal 5-HT1A-mediated neurotransmission. Clinical implications of these results are discussed, especially with regard to panic disorder and depression.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Several reports have shown that the hippocampus plays an important role in different aspects of the emotional control. There is evidence that lesions in this structure cause behavioral disinhibition, with reduction of reactions expressing fear and anxiety. Thus, to portray the aptitude of cell therapy to abrogate injuries of hippocampal tissue, we examined the behavioral effects of bone marrow mononuclear cells (BMMCs) transplantation on C57BL/6 mice that had the hippocampus damaged by electrolytic lesion. For this purpose, mice received, seven days after bilateral electrolytic lesion in the dorsal hippocampus, culture medium or BMMCs expressing the enhanced green fluorescent protein (EGFP) transgene. One week after transplantation, animals were tested in the elevated plus-maze (EPM). On the whole, three assessment sessions in the EPM were carried out, with seven days separating each trial. Thirty-five days after the induction of injury, mice were sacrificed and their brains removed for immunohistochemistry. The behavioral evaluation showed that the hippocampal lesion caused disinhibition, an effect which was slightly lessened, from the second EPM test, in transplanted subjects. On the other hand, immunohistochemical data revealed an insignificant presence of EGFP+ cells inside the brains of injured mice. In view of such scenario, we hypothesized that the subtle rehabilitation of the altered behavior might be a result from a paracrine effect from the transplanted cells. This might have been caused by the release of bioactive factors capable of boosting endogenous recuperative mechanisms for a partial regaining of the hippocampal functions. © 2013 Elsevier B.V.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Studies in several laboratories have confirmed the anxiolytic potential of a wide range of 5-HT1A receptor antagonists in rats and mice, with recent evidence pointing to a postsynaptic site of action in the ventral hippocampus. It would, therefore, be predicted that blockade of 5-HT1A somatodendritic autoreceptors in the midbrain raphe nuclei should produce anxiogenic-like effects. To test this hypothesis, we investigated the effects of WAY-100635 microinfusions (0, 1.0 or 3.0 mug in 0.1 mul) into the dorsal (DRN) or median (MRN) raphe nuclei on behaviours displayed by male Swiss-Webster mice in the elevated plus-maze. As this test is sensitive to prior experience. The effects of intra-raphe infusions were examined both in maze-naive and maze-experienced subjects. Sessions, were videotaped and subsequently scored for conventional indices of anxiety (open arm avoidance) and locomotor activity (closed arm entries), as well as a range of ethological measures (e.g. risk assessment). In maze-naive mice, intra-MRN (but not intra-DRN) infusions of WAY-100635 (3.0 mug) increased open arm exploration and reduced risk assessment. Importantly, these effects could not be attributed to a general reduction in locomotor activity. A similar, though somewhat weaker, pattern of behavioural change was observed in maze-experienced animals. This unexpected anxiolytic effect of 5-HT1A autoreceptor blockade in the MRN cannot be accounted fur by a disinhibition of 5-HT release in forebrain targets (e.g. hippocampus and amygdala), where stimulation of postsynaptic 5-HT1A receptors enhances anxiety-like responses. However, as the MRN also projects to the periaqueductal gray matter (PAG), an area known to be sensitive to the anti-aversive effects or 5-HT, it is argued that present results may reflect increased 5-HT release at this crucial midbrain locus within the neural circuitry of defense. (C) 2002 Elsevier B.V. B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Studies have demonstrated that nutrient deficiency during pregnancy or in early postnatal life results in structural abnormalities in the offspring hippocampus and in cognitive impairment. In an attempt to analyze whether gestational protein restriction might induce learning and memory impairments associated with structural changes in the hippocampus, we carried out a detailed morphometric analysis of the hippocampus of male adult rats together with the behavioral characterization of these animals in the Morris water maze (MWM). Our results demonstrate that gestational protein restriction leads to a decrease in total basal dendritic length and in the number of intersections of CA3 pyramidal neurons whereas the cytoarchitecture of CA1 and dentate gyrus remained unchanged. Despite presenting significant structural rearrangements, we did not observe impairments in the MWM test. Considering the clear dissociation between the behavioral profile and the hippocampus neuronal changes, the functional significance of dendritic remodeling in fetal processing remains undisclosed. © 2012 ISDN.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has been proposed that the ascending dorsal raphe (DR)-serotonergic (5-HT) pathway facilitates conditioned avoidance responses to potential or distal threat, while the DR-periventricular 5-HT pathway inhibits unconditioned flight reactions to proximal danger. Dysfunction on these pathways would be, respectively, related to generalized anxiety (GAD) and panic disorder (PD). To investigate this hypothesis, we microinjected into the rat DR the benzodiazepine inverse receptor agonist FG 7142, the 5-HT1A receptor agonist 8-OH-DPAT or the GABA(A) receptor agonist muscimol. Animals were evaluated in the elevated T-maze (ETM) and light/dark transition test. These models generate defensive responses that have been related to GAD and PD. Experiments were also conducted in the ETM 14 days after the selective lesion of DR serotonergic neurons by 5,7-dihydroxytriptamine (DHT). In all cases, rats were pre-exposed to one of the open arms of the ETM 1 day before testing. The results showed that FG 7142 facilitated inhibitory avoidance, an anxiogenic effect, while impairing one-way escape, an anxiolytic effect. 8-OH-DPAT, muscimol, and 5,7-DHT-induced lesions acted in the opposite direction, impairing inhibitory avoidance while facilitating one-way escape from the open arm. In the light/dark transition, 8-OH-DPAT and muscimol increased the time spent in the lighted compartment, an anxiolytic effect. The data supports the view that distinct DR-5-HT pathways regulate neural mechanisms underlying GAD and PD. (C) 2002 Elsevier B.V. B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to investigate the relationship between behaviors elicited by chemical stimulation of the dorsal periaqueductal gray (dorsal PAG) and spontaneous defensive behaviors to a predator, the excitatory amino acid D,L-homocysteic acid (5 nmol in 0.1 mu l), was infused into the dorsal PAG and behavioral responses of mice were evaluated in two different situations, a rectangular novel chamber or the Mouse Defense Test Battery (MDTB) apparatus. During a 1-min period following drug infusion, more jumps were made in the chamber than in the MDTB runway but running time and distance traveled were significantly higher in the runway. Animals were subsequently tested using the standard MDTB procedure (anti-predator avoidance, chase and defensive threat/attack). No drug effects on these measures were significant. In a further test in the MDTB apparatus, the pathway of the mouse during peak locomotion response was blocked 3 times by the predator stimulus (anesthetized rat) to determine if the mouse would avoid contact. Ninety percent of D,L-homocysteic treated animals made direct contact with the stimulus (rat), indicating that D,L-homocysteic-induced running is not guided by relevant (here, threat) stimuli. These results indicate that running as opposed to jumping is the primary response in mice injected with D,L-homocysteic into the dorsal PAG when the environment enables flight. However, the lack of responsivity to the predator during peak locomotion suggests that D,L-homocysteic-stimulation into the dorsal PAG does not induce normal antipredator flight. (c) 2006 Published by Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)