72 resultados para chitin binding activity
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
A lectin-like protein from the seeds of Acacia farnesiana was isolated from the albumin fraction, characterized, and sequenced by tandem mass spectrometry. The albumin fraction was extracted with 0.5 M NaCl, and the lectin-like protein of A. farnesiana (AFAL) was purified by ion-exchange chromatography (Mono-Q) followed by chromatofocusing. AFAL agglutinated rabbit erythrocytes and did not agglutinate human ABO erythrocytes either native or treated with proteolytic enzymes. In sodium dodecyl sulfate gel electrophoresis under reducing and nonreducing conditions, AFAL separated into two bands with a subunit molecular mass of 35 and 50 kDa. The homogeneity of purified protein was confirmed by chromatofocusing with a pI=4.0+/-0.5. Molecular exclusion chromatography confirmed time-dependent oligomerization in AFAL, in accordance with mass spectrometry analysis, which confers an alteration in AFAL affinity for chitin. The protein sequence was obtained by a liquid chromatography quadrupole time-of-flight experiment and showed that AFAL has 68% and 63% sequence similarity with lectins of Phaseolus vulgaris and Dolichos biflorus, respectively.
Resumo:
Different species of Leishmania can cause a variety of medically important diseases, whose control and treatment are still health problems. Telomere binding proteins (TBPs) have potential as targets for anti-parasitic chemotherapy because of their importance for genome stability and cell viability. Here, we describe LaTBP1 a protein that has a Myb-like DNA-binding domain, a feature shared by most double-stranded telomeric proteins. Binding assays using full-length and truncated LaTBP1 combined with spectroscopy analysis were used to map the boundaries of the Myb-like domain near to the protein only tryptophan residue. The Myb-like domain of LaTBP1 contains a conserved hydrophobic cavity implicated in DNA-binding activity. A hypothetical model helped to visualize that it shares structural homology with domains of other Myb-containing proteins. Competition assays and chromatin immunoprecipitation confirmed the specificity of LaTBP1 for telomeric and GT-rich DNAs, suggesting that LaTBP1 is a new TBP. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The gene encoding glycogen synthase in Neurospora crassa (gsn) is transcriptionally down-regulated when mycelium is exposed to a heat shock from 30 to 45 degrees C. The gsn promoter has one stress response element (STRE) motif that is specifically bound by heat shock activated nuclear proteins. In this work, we used biochemical approaches together with mass spectrometric analysis to identify the proteins that bind to the STRE motif and could participate in the gsn transcription regulation during heat shock. Crude nuclear extract of heat-shocked mycelium was prepared and fractionated by affinity chromatography. The fractions exhibiting DNA-binding activity were identified by electrophoretic mobility shift assay (EMSA) using as probe a DNA fragment containing the STRE motif DNA-protein binding activity was confirmed by Southwestern analysis. The molecular mass (MM) of proteins was estimated by fractionating the crude nuclear extract by SDS-PAGE followed by EMSA analysis of the proteins corresponding to different MM intervals. Binding activity was detected at the 30-50 MM kDa interval. Fractionation of the crude nuclear proteins by IEF followed by EMSA analysis led to the identification of two active fractions belonging to the pIs intervals 3.54-4.08 and 6.77-7.31. The proteins comprising the MM and pI intervals previously identified were excised from a 2-DE gel, and subjected to mass spectrometric analysis (MALDI-TOF/TOF) after tryptic digestion. The proteins were identified by search against the MIPS and MIT N. crassa databases and five promising candidates were identified. Their structural characteristics and putative roles in the gsn transcription regulation are discussed.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Regulation of chromosome inheritance is essential to ensure proper transmission of genetic information. To accomplish accurate genome segregation, cells organize their chromosomes and actively separate them prior to cytokinesis. In Bacillus subtilis the Spo0J protein is required for accurate chromosome segregation and it regulates the developmental switch from vegetative growth to sporulation. Spo0J is a DNA-binding protein that recognizes at least eight identified parS sites located near the origin of replication. As judged by fluorescence microscopy, Spo0J forms discrete foci associated with the oriC region of the chromosome throughout the cell cycle. In an attempt to determine the mechanisms utilized by Spo0J to facilitate productive chromosome segregation, we have investigated the DNA binding activity of Spo0J. In vivo we find Spo0J associates with several kilobases of DNA flanking its specific binding sites (parS) through a parS-dependent nucleation event that promotes lateral spreading of Spo0J along the chromosome. Using purified components we find that Spo0J has the ability to coat non-specific DNA substrates. These 'Spo0J domains' provide large structures near oriC that could potentially demark, organize or localize the origin region of the chromosome.
Resumo:
Paracoccidioides brasiliensis is a dimorphic fungus known to produce invasive systemic disease in humans. The 43-kDa glycoprotein of P, brasiliensis is the major diagnostic antigen of paracoccidioidomycosis and may act as a virulence factor, since it is a receptor for laminin. Very little is known about early interact-ions between this fungus and the host cells, so we developed in vitro a model system employing cultured mammalian cells (Vero cells), in order to investigate the factors and virulence mechanisms of P. brasiliensis related to the adhesion and invasion process. We found that there is a permanent interaction after 30 min of contact between the fungus and the cells. The yeasts multiply in the cells for between 5 and 24 h. Different strains of P, brasiliensis were compared, and strain 18 thigh virulence) was the most strongly adherent, followed by strain 113 (virulent), 265 (considered of low virulence) and 113M(mutant obtained by ultraviolet radiation, deficient in gp43). P. brasiliensis adhered to the epithelial cells by a narrow tube, while depressions were noticed in the cell surface, suggesting an active cavitation process. An inhibition assay was performed and it was verified that anti-gp43 serum and a pool of sera from individuals with paracoccidioidomycosis were able to inhibit the adhesion of P. brasiliensis to the Vero cells. Glycoprotein 43 (gp43) antiserum abolished 85 % of the binding activity of P. brasiliensis. This fungus can also invade the Vero cells, and intraepithelial parasitism could be an escape mechanism in paracoccidioidomycosis. (C) 2000 Editions scientifiques et medicales Elsevier SAS.
Resumo:
Inflammatory bowel diseases are characterized by a chronic clinical course of relapse and remission associated with self-destructive inflammation of the gastrointestinal tract. Active extracts from plants have emerged as natural potential candidates for its treatment. Abarema cochliacarpos (Gomes) Barneby & Grimes, Fabaceae (Barbatimão), is a native medicinal plant in to Brazil. Previously we have demonstrated in an acute colitis model a marked protective effect of a butanolic extract, so we decided to assess its anti-inflammatory effect in a chronic ulcerative colitis model induced by trinitrobenzensulfonic acid (TNBS). Abarema cochliacarpos (150 mg/day, v.o.) was administered for fourteen consecutive days. This treatment decreased significantly macroscopic damage as compared with TNBS. Histological analysis showed that the extract improved the microscopic structure. Myeloperoxidase activity (MPO) was significantly decreased. Study of cytokines showed that TNF-α was diminished and IL-10 level was increased after Abarema cochliacarpos treatment. In order to elucidate inflammatory mechanisms, expression of cyclooxygenase (COX)-2 and nitric oxide synthase (iNOS) were studied showing a significant downregulation. In addition, there was reduction in the JNK and p-38 activation. Finally, IκB degradation was blocked by Abarema cochliacarpos treatment being consistent with an up-regulation of the NF-kappaB-binding activity. These results reinforce the anti-inflammatory effects described previously suggesting that Abarema cochliacarpos could provide a source for the search for new anti-inflammatory compounds useful in ulcerative colitis treatment.
Resumo:
Filamentous haemagglutinin adhesin (FHA) is an important virulence factor from Bordetella pertussis related to the adhesion and spread of the bacteria through the respiratory tract. Three distinct domains have been characterized in mature FHA, and among them, the FHA(442-863) fragment was suggested to be responsible for the heparin-binding activity. In this study, we cloned the gene encoding the HEP fragment (FHA(430-873)) in a Lactobacillus casei-inducible expression vector based on the lactose operon. The recombinant bacteria, transformed with the resulting construct (L. casei-HEP), were able to express the heterologous protein depending on the sugar added to the culture. Subcutaneous inoculation of L. casei-HEP in Balb/C mice, using the cholera toxin B subunit as adjuvant, induced systemic anti-HEP antibodies that were able to inhibit in vitro erythrocyte haemagglutination induced by FHA. This is the first example of a B. pertussis antigen produced in lactic acid bacteria and opens new perspectives for alternative vaccine strategies against whooping cough.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Agronomia (Genética e Melhoramento de Plantas) - FCAV
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Parkia platycephala lectin 2 was purified from Parkia platycephala (Leguminosae, Mimosoideae) seeds by affinity chromatography and RP-HPLC. Equilibrium sedimentation and MS showed that Parkia platycephala lectin 2 is a nonglycosylated monomeric protein of molecular mass 29 407 +/- 15 Da, which contains six cysteine residues engaged in the formation of three intramolecular disulfide bonds. Parkia platycephala lectin 2 agglutinated rabbit erythrocytes, and this activity was specifically inhibited by N-acetylglucosamine. In addition, Parkia platycephala lectin 2 hydrolyzed beta(1-4) glycosidic bonds linking 2-acetoamido-2-deoxy-beta-D-glucopyranose units in chitin. The full-lengthamino acid sequence of Parkia platycephala lectin 2, determined by N-terminal sequencing and cDNA cloning, and its three-dimensional structure, established by X-ray crystallography at 1.75 angstrom resolution, showed that Parkia platycephala lectin 2 is homologous to endochitinases of the glycosyl hydrolase family 18, which share the (beta alpha)(8) barrel topology harboring the catalytic residues Asp125, Glu127, and Tyr182.