141 resultados para biomedical titanium alloys

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ti-Mo alloys from 4 to 20 Mo wt.% were arc-melted. Their compositions and surfaces were analyzed by EDX, XRF and SEM. The Mo mapping shows a homogeneous distribution for all alloys. The XRD analysis showed that the crystal structure of the alloys is sensitive to the Mo concentration; a mixture of the hexagonal alpha' and orthorhombic alpha '' phases was observed for the Ti-4Mo alloy, and the alpha '' phase is observed almost exclusively when the concentration of Mo added to the Ti reaches 6%. A significant retention of the beta phase is observed for the alloy containing 10% Mo, while at higher Mo concentrations (15% and 20%), retention of phase beta is only verified. Preliminary electrochemical studies have indicated a valve-metal behavior and good corrosion resistance in aerated Ringer solution for all alloys. (c) 2006 Published by Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: In vivo bone response was assessed by removal torque, hystological and histometrical analysis on a recently developed biomedical Ti-15Mo alloy, after surface modification by laser beam irradiation, installed in the tibia of rabbits. Materials and Methods: A total of 32 wide cylindrical Ti-15Mo dental implants were obtained (10mm × 3.75mm). The implants were divided into two groups: 1) control samples (Machined surface - MS) and 2) implants with their surface modified by Laser beam-irradiation (Test samples - LS). Six implants of each surface were used for removal torque test and 10 of each surface for histological and histometrical analysis. The implants were placed in the tibial metaphyses of rabbits. Results: Average removal torque was 51.5Ncm to MS and >90Ncm to LS. Bone-to-implant-contact percentage was significantly higher for LS implants both in the cortical and marrow regions. Conclusions: The present study demonstrated that laser treated Ti-15Mo alloys are promising materials for biomedical application. © 2011 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

New titanium alloys for biomedical applications have been developed primarily with the addition of Nb, Ta, Mo, and Zr, because those elements stabilize the β phase and they don’t cause cytotoxicity in the organism. The objective of this paper is to analyze the effect of molybdenum on the structure, microstructure, and selected mechanical properties of Ti-15Zr-xMo (x = 5, 10, 15, and 20 wt%) alloys. The samples were produced in an arc-melting furnace with inert argon atmosphere, and they were hot-rolled and homogenized. The samples were characterized using chemical, structural, and microstructural analysis. The mechanical analysis was made using Vickers microhardness and Young’s modulus measurements. The compositions of the alloys were sensitive to the molybdenum concentration, indicating the presence of α’+α”+β phases in the Ti-15Zr-5Mo alloy, α”+β in the Ti-15Zr-10Mo alloy, and β phase in the Ti-15Zr-15Mo and Ti-15Zr-20Mo alloys. The mechanical properties showed favorable values for biomedical application in the alloys presenting high hardness and low Young’s modulus compared with CP-Ti.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Ti-15Mo-xNb system integrates a new class of titanium alloys without the presence of aluminum and vanadium, which exhibit cytotoxicity, and that have low elasticity modulus values (below 100 GPa). This occurs because these alloys have a beta structure, which is very attractive for use as biomaterials. In addition, Brazil has about 90% of the world’s resources of niobium, which is very important economically. It strategically invests in research on the development and processing of alloys containing this element. In this paper, a study of the influence of heat treatments on the structure and microstructure of the alloys of a Ti-15Mo-xNb system is presented. The results showed grain grown with heat treatment and elongated and irregular grains after lamination due to this processing. After quenching, there were no changes in the microstructure in relation to heat-treated and laminated conditions. These results corroborate the x-ray diffraction results, which showed the predominance of the β phase.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Ti-15Mo alloy is a promising material for use as a biomaterial because of its excellent corrosion resistance and its good combination of mechanical properties, such as fatigue, hardness, and wears resistance. This alloy has a body-centered predominantly cubic crystalline structure and the addition of interstitial atoms, such as oxygen and nitrogen, strongly alters its mechanical properties. Mechanical spectroscopy is a powerful tool to study the interaction of interstitial elements with the matrix metal or substitutional solutes, providing information such as the distribution and the concentration of interstitial elements. The objective of this paper is to study of the effects of heavy interstitial elements, such as oxygen and nitrogen, on the anelastic properties of the Ti-15Mo alloy by using mechanical spectroscopy measurements. In this study, the diffusion coefficients, pre-exponential factors, and activation energies were calculated for the oxygen in the Ti-15Mo alloy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heating titanium structures is assumed to relieve tensions induced by the casting process as well as possibly optimizing some mechanical properties. The aim of this investigation was to evaluate the effect of thermal treatments on tensile strength of commercially pure titanium (CP Ti) and Ti-6Al-4V alloy. Thirty dumbbell rods, with diameters of 3.0 mm at the central segment and lengths of 42 mm, were cast for each metal using the Rematitan System. CP Ti and Ti-6Al-4V specimens were randomly divided into three groups of ten: a control group that received no thermal treatment and two test groups. One (T1) was heated at 750°C for 2 h and the other (T2) was annealed at 955°C for 1 h and aged at 620°C for 2 h. Tensile strength was measured with a universal testing machine (MTS model 810). Tensile strength means and standard deviations were statistically compared using a Kruskal-Wallis test at a α = 0.05 significance level. No statistically significant differences in tensile strength were observed among CP Ti groups. For the Ti-6Al-4V alloy, the control and T1 groups revealed statistically higher tensile strengths when compared to the T2 group, with no significant difference between the control and T1 groups. © 2005 Springer Science + Business Media, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Titanium alloys normally contain oxygen, nitrogen, or carbon as impurities, and although this concentration is low, these impurities cause changes in the mechanical properties of Ti alloys. Oxygen is a strong alpha-phase stabilizer and its addition causes solid-solution strengthening, shape memory effect, and superelasticity. The most promising alloys are those with Nb, Zr, Ta, and Mo as alloying elements. In this paper, the preparation, processing, and characterization of Ti-Mo alloys (5 and 10 wt%) used as biomaterials are presented, along with the influence of oxygen on their mechanical properties. The addition of oxygen causes an increase in the elasticity modulus of the Ti-5Mo alloy due to an increase in the alpha' phase volume fraction, which possesses a higher modulus than the alpha '' phase. Ti-10Mo possesses a mixture between alpha '' and beta phases, oxygen enters these two structures and causes a dominating effect.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Titanium alloys are excellent implant materials for orthopedic applications due to their desirable properties, such as good corrosion resistance, low elasticity modulus, and excellent biocompatibility. The presence of interstitial elements (such as oxygen and nitrogen) causes strong changes in the material's mechanical properties, mainly in its elastic properties. Study of the interaction among interstitial elements present in metals began with Snoek's postulate, that a stress-induced ordering of interstitials gives rise to a peak in the mechanical relaxation (internal friction) spectra. In the mechanical relaxation spectra, each species of interstitial solute atom gives rise to a distinct Snoek's peak, whose temperature and position depend on the measurement frequency. This effect is very interesting because its peculiar parameters are directly related to the diffusion coefficient (D) for the interstitial solute. This paper presents a study of diffusion of heavy interstitial elements in Ti-35Nb-7Zr-5Ta alloys using mechanical spectroscopy. Pre-exponential factors and activation energies are calculated for oxygen and nitrogen in theses alloys.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Titanium alloys are favorable implant materials for orthopedic applications, due to their desirable properties such as good corrosion resistance, low elasticity modulus, and excellent biocornpatibility. The research on titanium alloys is concentrated in the beta type, as the Ti-20Mo alloys and the addition of interstitial elements in these metals cause changes in their mechanical properties. The mechanical spectroscopy measurements have been frequently used in order to verify the behavior of these interstitials atoms in metallic alloys. This paper presents the study of oxygen diffusion in Ti-20Mo alloys using mechanical spectroscopy measurements. A thermally activated relaxation structure was observed in the sample after oxygen doping. It was associated with the interstitial diffusion of oxygen atoms in a solid solution in the alloy. The diffusion coefficient for the oxygen diffusion in the alloy was obtained by the frequency dependence of the peak temperature and by using a simple mathematical treatment of the relaxation structure and the Arrhenius law.