24 resultados para acid chloride

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

60.00% 60.00%

Publicador:

Resumo:

From a hexane extract of stems and roots of Aristolochia pubescens, the new neolignans (2S,3S,1'R,2'R)- and (2S,3S, 1'S,2'R)-2,3-dihydro-5-(1',2'-dihydroxypropyl)-2-(4-hydroxy-3-methylbenzofuran) and (2S,3S,1'R,2'R)- and (2S,3S,1'S,2'R)-2,3-dihydro-5-(1',2'-dihydroxypropyl)-2-(3,4-dimethoxyphenyl)-7-methoxy-3-methyl-benzofuran were isolated, together with the known neolignan licarin A, and its bisnor-neolignan aldehyde and acid derivatives. In addition, sitosterol, 8R,9R-oxide-beta-caryophyllene, kobusone, ent-kauran-16 alpha, 17-diol, vanillin, vanillic acid, (+)-sesamin, (+)eudesmin, and (-)-cubebin were isolated. The structures of the new compounds have been elucidated by spectroscopic methods and by chemical transformation using Mosher's acid chloride. (C) 1999 Elsevier B.V. Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study investigated the microbial action in soil on poly(L-lactic acid) (PLLA) and polyvinyl chloride (PVC) films and a PLLA/PVC 7 : 3 blend, using Fourier transform infrared spectroscopy (FTIR), contact angle and scanning electron microscopy (SEM). The films (50 mu m) were obtained from the evaporation of dichloromethane solutions and buried in soil columns, in controlled conditions, for 120 days. The results showed that the surface of the PLLA films and blend became 18 and 31% more hydrophilic, respectively. The morphology of the films also changed after 120 days of microbial treatment, particularly that of the PLLA phase in the blend, confirmed by structural and conformational changes in the FTIR CO region at 12001000 cm1 and an increase in the relative intensity of the band at 1773 cm1, which was attributed to C O group vibration due to a rotational isomer in the interlamellar region (semi-ordered region). Besides the biotreated PVC presented changes in the C-Cl band at 738 cm1, due to the presence of some PVC conformational isomer. (C) 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sonicated mixtures of dimethyldioctadecylammonium chloride (DODAC), egg phosphatidylcholine (PC), dimyristoyl phosphatidylcholine (DMPC), and dipalmitoyl phosphatidylcholine (DPPC) were used to analyze vesicle effects on the rate of decarboxylation of 6-nitrobenzisoxazol-3-carboxylic acid (Nboc). Electron microscopic images of the vesicles were obtained with trehalose, a know cryoprotector. Phase diagrams and phase transitions temperatures of the vesicle bilayers were determined. Nboc decarboxylation rates increased in the presence of vesicles prepared with both phospholipids and DODAC/phospholipid mixtures. Quantitative analysis of vesicular effects was done using pseudophase models. Phospholipids catalyzed up to 140-fold while the maximum catalysis by DODAC/lipid vesicles reached 800-fold. Acceleration depends on alkyl chain length, fatty acid insaturation of the lipids, and the DODAC/phospholipid molar ratio. Catalysis is not related to the liquid crystalline-gel state of the bilayer and may be related to the relative position of Nboc with respect to the interface.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

P>Reasons for performing study:Carbonic anhydrase (CA) catalyses the hydration/dehydration reaction of CO(2) and increases the rate of Cl- and HCO(3)- exchange between the erythrocytes and plasma. Therefore, chronic inhibition of CA has a potential to attenuate CO(2) output and induce greater metabolic and respiratory acidosis in exercising horses.Objectives:To determine the effects of Carbonic anhydrase inhibition on CO(2) output and ionic exchange between erythrocytes and plasma and their influence on acid-base balance in the pulmonary circulation (across the lung) in exercising horses with and without CA inhibition.Methods:Six horses were exercised to exhaustion on a treadmill without (Con) and with CA inhibition (AczTr). CA inhibition was achieved with administration of acetazolamide (10 mg/kg bwt t.i.d. for 3 days and 30 mg/kg bwt before exercise). Arterial, mixed venous blood and CO(2) output were sampled at rest and during exercise. An integrated physicochemical systems approach was used to describe acid base changes.Results:AczTr decreased the duration of exercise by 45% (P < 0.0001). During the transition from rest to exercise CO(2) output was lower in AczTr (P < 0.0001). Arterial PCO(2) (P < 0.0001; mean +/- s.e. 71 +/- 2 mmHg AczTr, 46 +/- 2 mmHg Con) was higher, whereas hydrogen ion (P = 0.01; 12.8 +/- 0.6 nEq/l AczTr, 15.5 +/- 0.6 nEq/l Con) and bicarbonate (P = 0.007; 5.5 +/- 0.7 mEq/l AczTr, 10.1 +/- 1.3 mEq/l Con) differences across the lung were lower in AczTr compared to Con. No difference was observed in weak electrolytes across the lung. Strong ion difference across the lung was lower in AczTr (P = 0.0003; 4.9 +/- 0.8 mEq AczTr, 7.5 +/- 1.2 mEq Con), which was affected by strong ion changes across the lung with exception of lactate.Conclusions:CO(2) and chloride changes in erythrocytes across the lung seem to be the major contributors to acid-base and ions balance in pulmonary circulation in exercising horses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Water and sodium chloride intake was studied in male Holtzman rats weighing 250-300 g that had been subjected to electrolytic and chemical lesions of the septal area (SA). Water intake increased in animals with electrolytic lesion of the SA bilaterally from 169.37 +/- 8.55 (sham) to 214.87 +/- 23.10 ml/5 days (lesioned). Water intake decreased after ibotenic acid lesion of the SA from 229.33 +/- 27.60 to 127.33 +/- 22.84 ml/5 days. Sodium chloride intake (1.5%) increased in animals with electrolytic lesion of the SA from 10.0 +/- 1.73 to 15.5 +/- 1.95 ml/5 days after lesion. Also sodium chloride (1.5%) intake increased after ibotenic acid injection into the SA to a greater extent (from 7.83 +/- 1.25 to 14.33 +/- 1.87 ml/5 days). The results indicate that the water intake response may be due to lesions that involve cell bodies and fibers of passage and that the sodium intake response can also be induced by lesions which involve only cell bodies. Finally, these results led us to conclude that the SA uses its cell bodies and afferent bodies and fibers for processing inputs mediating water intake and salt appetite and that the cells bodies of the SA are implicated in increased water intake. (C) 1998 Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Partial pseudoternary phase diagrams were constructed for soy bean oil (SBO)/surfactant/NaCl aqueous solution systems, at 25 degrees C, using the anionic sodium bis(2-ethylhexyl) sulfosuccinate (ACT) and zwiterionic phosphatidylcholine (PC) or mixtures of these surfactants. The isotropic single phase of water-in-oil (W/O) microemulsions (MEs) is shown in the phase diagram and their viscosity reported. ME samples containing small amount of surfactant exhibit slightly higher viscosity than pure SBO, and were used in the solubilization of small water soluble molecules. NaCl enhances the area of the ME phase and MEs with different surfactant composition exhibit different induction time as obtained from tests of oxidative stability, and so are the MEs enriched with ascorbic acid, folic acid and FeSO4, with the latter exhibiting lower stability. The so prepared enriched soy bean oil has potential application in food industry since the surfactants are food grade. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Water, compared with plasma at a pH of 7.4, is a weak acid. The addition of free water to a patient should have an acidifying effect (dilutional acidosis) and the removal of it, an alkalinizing effect (concentrational alkalosis). The specific effects of free water loss or gain in a relatively complex fluid such as plasma has, to the authors' knowledge, not been reported. This information would be useful in the interpretation of the effect of changes in free water in patients. Plasma samples from goats were either evaporated in a tonometer to 80% of baseline volume or hydrated by the addition of distilled water to 120% of baseline volume. The pH and partial pressure of carbon dioxide, sodium, potassium, ionized calcium, chloride, lactate, phosphorous, albumin, and total protein concentrations were measured. Actual base excess (ABE), standard bicarbonate, anion gap, strong ion difference, strong ion gap, unmeasured anions, and the effects of sodium, chloride, phosphate, and albumin changes on ABE were calculated. Most parameters changed 20% in proportion to the magnitude of dehydration or hydration. Bicarbonate concentration, however, increased only 11% in the evaporation trial and decreased only -2% in the dehydration trial. The evaporation trial was associated with a mild, but significant, metabolic alkalotic effect (ABE increased 3.2 mM/L), whereas the hydration trial was associated with a slight, insignificant metabolic acidotic effect (ABE decreased only 0.6 mM/L). The calculated free water ABE effect (change in sodium concentration) was offset by opposite changes in calculated chloride, lactate, phosphate, and albumin ABE effects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The generation of active chlorine on Ti/Sn(1-x)Ir (x) O-2 anodes, with different compositions of Ir (x = 0.01, 0.05, 0.10 and 0.30 ), was investigated by controlled current density electrolysis. Using a low concentration of chloride ions (0.05 mol L-1) and a low current density (5 mA cm(-2)) it was possible to produce up to 60 mg L-1 of active chlorine on a Ti/Sn0.99Ir0.01O2 anode. The feasibility of the discoloration of a textile acid azo dye, acid red 29 dye (C.I. 16570), was also investigated with in situ electrogenerated active chlorine on Ti/Sn(1-x)Ir (x) O-2 anodes. The best conditions for 100% discoloration and maximum degradation (70% TOC reduction) were found to be: NaCl pH 4, 25 mA cm(-2) and 6 h of electrolysis. It is suggested that active chlorine generation and/or powerful oxidants such as chlorine radicals and hydroxyl radicals are responsible for promoting faster dye degradation. Rate constants calculated from color decay versus time reveal a zero order reaction at dye concentrations up to 1.0 x 10(-4) mol L-1. Effects of other electrolytes, dye concentration and applied density currents also have been investigated and are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sodium chloride intake was studied in male Holtzman rats weighing 250-300 g submitted to electrolytic and chemical lesion of the cell bodies, not fibers of the amygdaloid complex. Sodium chloride (1.5%) intake increased in animals with electrolytic lesion of the corticomedial nucleus of the amygdala. Sodium chloride (1.5%) intake increased after ibotenic acid injection into the corticomedial nucleus of the amygdala to a larger extent (26.6 +/- 9.2 to 147.6 +/- 34.6 ml/5 days). The results indicate that sodium intake response can be induced by lesions, which involved only cell bodies. The fibers of passage of the corticomedial nucleus of the amygdala produce a water intake less consistent than that induced by ibotenic acid, which is more acute. The results show that cell bodies of this region of the amygdala are involved in the control of sodium chloride intake.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The behaviour of hydrophobically modified poly(allylammonium) chloride having octyl, decyl, dodecyl and hexadecyl side chains has been studied in aqueous solution using fluorescence emission techniques. Micropolarity studies using the I-1/I-3 ratio of the vibronic bands of pyrene show that the formation of hydrophobic microdomains depends on both the length of the side chain and the polymer concentration. The I-1/I-3 ratio of the polymers with low hydrophobe content (less than 5% mel) changes substantially when reaching a certain concentration. These changes are assigned to aggregation originating from interchain interactions. This behaviour is also confirmed by the behaviour of the monomer/excimer emission intensities of pyrene- dodecanoic acid used as a probe. For polymers having dodecyl side chains and hydrophobe contents higher than 10%, aggregates are formed independently of the polymer concentration. Anisotropy measurements show that microdomains resulting from the inter- and/or intramolecular interactions are similar to those observed for cationic surfactants. Viscosity measurements show that the coil dimensions are substantially decreased for the polymers having high hydrophobe contents, indicating intramolecular associations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The thermoreversible sol-gel transition is well-known in biological and organic polymeric systems but has not been reported for inorganic systems. In this paper we put in evidence a thermoreversible sol-gel transition for zirconyl chloride aqueous solutions modified by sulfuric acid in the ratio 3:1 Zr:SO4. The synthesis conditions are detailed and a variety of experimental techniques (turbidimetry, dynamic rheology, and EXAFS) have been employed for investigating the thermal reversibility and the chemical structure of this new material. Turbidimetric measurements performed for solutions containing different concentrations of precursor have evidenced that the sol-gel transformation temperature increases from 50 to 80 degrees C as the concentration of zirconyl chloride decreases from 0.22 to 0.018 mol L-1. A more detailed study has been done for the sample with [Zr] = 0.156 mol L-1, in which the sol-gel-sol transformation has been repeated several times by a cyclic variation of the temperature. The mechanical properties of this sample, evaluated by measuring the storage and the loss moduli, show a change from liquid like to viscoelastic to elastic behavior during the sol-gel transition and vice versa during the gel-sol one. In situ EXAFS measurements performed at the Zr K-edge show that no change of the local order around Zr occurs during the sol-gel-sol transition, in agreement with the concept of physical gel formation. We have proposed for the structure of the precursor an inner core made of hydroxyl and oxo groups bridging together zirconium atoms surrounded in surface by complexing sulfate ligands, the sulfate groups act as a protective layer, playing a key role in the linking propagation among primary particles during sol-gel-sol transition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An optimization study of the reaction conditions of Fe(TDCPP)Cl when it is used as catalyst in the hydroxylation of cyclohexane by iodosylbenzene (PhIO) has been carried out, It was found that Fe(TDCPP)Cl follows the classical PhIO mechanism described for Fe(TPP)Cl, which involves the monomeric active species Fe-IV(O)P-+. (I). In the optimized condition ([Fe(TDCPP) = 3.0 X 10(-4) mol l(-1) in 1,2-dichloroethane (DCE); ultrasound stirring at 0 degrees C; PhIO/FeP molar ratio = 100), this FeP led to a yield of cyclohexanol (C-ol) of 96% and a turnover number of 96, Therefore, Fe(TDCPP)Cl may be considered a good biomimetic model and a very stable, resistant and selective catalyst, which yields C-ol as the sole product. DCE showed to be a better solvent than dichloromethane (DCM), 1 DCE:1 MeOH mixture or acetonitrile (ACN). Since the Fe-IV(O)P-+. is capable of abstracting hydrogen atom from DCM, MeOH or ACN, the solvent competes with the substrate. Presence of O-2 lowers the yield of C-ol, as it can further oxidize this alcohol to carboxylic acid in the presence of radicals, Presence of H2O also causes a decrease in the yield, since it converts the active species I into Fe-IV(OH)P, which cannot oxidize cyclohexane. Addition of excess imidazole or OH- to the system results in a decrease in the yield of C-ol, due to the formation of the hexacoordinated complexes Fe(TDCPP)Im(2)(+) (low-spin, beta(2) = 2.5 X 10(8) mol(-2) l(2)) and Fe(TDCPP)(OH)(2)(-) (high-spin, beta(2) = 6.3 X 10(7) mol(-2) l(2)), the formation of both Fe(TDCPP)Im(2)(+) and Fe(TDCPP)(OH)(2)(-) complexes were confirmed by EPR studies. The catalytic activities of Fe(TDCPP)C and Fe(TFPP)Cl were compared, the unusually high yields of C-ol with Fe(TFPP)Cl obtained when ultrasound, DCM and O-2 atmosphere were used, suggest that a parallel mechanism involving the mu-oxo dimer form, O-2 and radicals may also be occurring with this FeP, besides the PhIO mechanism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The photo-Fenton process using potassium ferrioxalate as a mediator in the photodegradation reaction of organochloride compounds in an aqueous medium was investigated. The influence of parameters such as hydrogen peroxide and ferrioxalate concentrations and initial pH, was evaluated using dichloroacetic acid (DCA) as a model compound under black-light lamp irradiation. An upflow annular photoreactor, operating in a single pass or recirculating mode was used during photodegradation experiments with artificial light. The extent of the release of chloride ions was used to evaluate the photodegradation reaction. The optimum pH range observed was 2.5-2.8. The efficiency of DCA dechlorination increased with increasing concentrations of H2O2 and potassium ferrioxalate, reaching a plateau after the addition of 6 and 1.5 mmol/L of those reagents, respectively. The total organic carbon (TOC) content in DCA and 2,4-dichlorophenol (DCP) solutions was compared with the chloride released after photodegradation. The influence of natural solar light intensity, measured at 365 nm, was evaluated for the dechlorination of DCA on typical summer's days showing a linear dependency. The photodegradation of DCA using black-light lamp and solar irradiation was compared.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sodium (Na+) and chloride (Cl-) nutritional requirements, dietary electrolyte balance (DEB), and their effects on acid-base balance, litter moisture, and tibial dyschondroplasia (TD) incidence for young broiler chickens were evaluated in two trials. One-day-old Cobb broilers were distributed in a completely randomized design with six treatments, five replicates, and 50 birds per experimental unit. Treatments used in both experiments were a basal diet with 0.10% Na+ (Experiment 1) or Cl- (Experiment 2) supplemented to result in diets with Na+ or Cl- levels of 0.10, 0.15, 0.20, 0.25 ,0.30, or 0.35%, respectively. In Experiment 1, results indicated an optimum Na+ requirement of 0.26%. Sodium levels caused a linear increase in arterial blood gas parameters, indicating an alkalogenic effect of Na+. The hypertrophic area of growth plate in the proximal tibiotarsi decreased with Na+ levels. The TD incidence decreased with increases in dietary Na+. Litter moisture increased linearly with sodium levels. In Experiment 2, the Cl- requirement was estimated as 0.25%. Chloride levels caused a quadratic effect (P ≤ 0.01) on blood gas parameters, with an estimated equilibrium [blood base excess (BE) = 0] at 0.30% of dietary CT-. No Cl- treatment effects (P ≥ 0.05) were observed on litter moisture or TD incidence. The best DEB for maximum performance was 298 to 315 mEq/kg in Experiment 1 and 246 to 264 mEq/kg in Experiment 2. We concluded that the Na+ and Cl- requirements for optimum performance of young broiler chickens were 0.28 and 0.25%, respectively.