340 resultados para Zirconia ceramic
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
The objective of this study was to evaluate the durability of bond strength between a resin cement and aluminous ceramic submitted to various surface conditioning methods. Twenty-four blocks (5 X 5 X 4 mm 3) of a glass-in filtrated zirconia-alumina ceramic (inCeram Zirconia Classic) were randomly divided into three surface treatment groups: ST1-Air-abrasion with 110-mu m Al2O3 particles + silanization; ST2-Laboratory tribochemical silica coating method (110-mu m Al2O3, ilO-PM Silica) (Rocatec) + silanization; ST3-Chairside tribochemical silica coating method (30-mu m SiOx) (CoJet) + silanization. Each treated ceramic block was placed in its silicone mold with the treated surface exposed. The resin cement (Panavia F) was prepared and injected into the mold over the treated surface. Specimens were sectioned to achieve nontrimmed bar specimens (14 sp/block) that were randomly divided into two conditions: (a) Dry-microtensile test after sectioning; (b) Thermocycling (TC)-(6,000X, 5-55 degrees C) and water storage (150 days). Thus, six experimental groups were obtained (11 = 50): Gr1-ST1 + dry; Gr2-ST1 + TC. Gr3-ST2 + dry; Gr4-ST2 + TC; Gr5-ST3 + dry; Gr6ST3 + TC. After microtensile testing, the failure types were noted. ST2 (25.1 +/- 11) and ST3 (24.1 +/- 7.4) presented statistically higher bond strength (MPa) than that of STI (17.5 +/- 8) regardless of aging conditions (p < 0.0001). While Gr2 revealed the lowest results (13.3 +/- 6.4), the other groups (21.7 +/- 7.4-25. 9 +/- 9.1) showed statistically no significant differences (two-way ANOVA and Tukey's test, a 0.05). The majority of the failures were mixed (82%) followed by adhesive failures (18%). Gr2 presented significantly higher incidence of ADHESIVE failures (54%) than those of other groups (p = 0.0001). Both laboratory and chairside silica coating plus silanization showed durable bond strength. After aging, airabrasion with 110-mu m Al2O3 + silanization showed the largest decrease indicating that aging is fundamental for bond strength testing for acid-resistant Arconia ceramics in order to estimate their long-term performance in the mouth. (c) 2007 Wiley Periodicals, Inc.
Resumo:
The unique properties of ceramic foams enable their use in a variety of applications. This work investigated the effects of different parameters on the production of zirconia ceramic foam using the sol-gel process associated with liquid foam templates. Evaluation was made of the influence of the thermal treatment temperature on the porous and crystalline characteristics of foams manufactured using different amounts of sodium dodecylsulfate (SDS) surfactant. A maximum pore volume, with high porosity (94%) and a bimodal pore size distribution, was observed for the ceramic foam produced with 10% SDS. Macropores, with an average size of around 30 μm, were obtained irrespective of the SDS amount, while the average size of the supermesopores increased systematically as the SDS amount was increased up to 10%, after which it decreased. X-ray diffraction analyses showed that the sample treated at 500 °C was amorphous, while crystallization into a tetragonal metastable phase occurred at 600 °C due to the presence of sulfate groups in the zirconia structure. At 800 and 1000 °C the monoclinic phase was observed, which is thermodynamically stable at these temperatures. © 2013 by the authors; licensee MDPI, Basel, Switzerland.
Resumo:
This study evaluated the effect of different air-particle abrasion protocols on the biaxial flexural strength and structural stability of zirconia ceramics. Zirconia ceramic specimens (ISO 6872) (Lava, 3M ESPE) were obtained (N=336). The specimens (N=118, n=20 per group) were randomly assigned to one of the air-abrasion protocols: Gr1: Control (as-sintered); Gr2: 50 μm Al2O3 (2.5 bar); Gr3: 50 μm Al2O3 (3.5 bar); Gr4: 110 μm Al2O3(2.5 bar); Gr5: 110 μm Al2O3 (3.5 bar); Gr6: 30 μm SiO2 (2.5 bar) (CoJet); Gr7: 30 μm SiO2(3.5 bar); Gr8: 110 μm SiO2 (2.5 bar) (Rocatec Plus); and Gr9: 110 μm SiO2 (3.5 bar) (duration: 20 s, distance: 10 mm). While half of the specimens were tested immediately, the other half was subjected to cyclic loading in water (100,000 cycles; 50 N, 4 Hz, 37 °°C) prior to biaxial flexural strength test (ISO 6872). Phase transformation (t→m), relative amount of transformed monoclinic zirconia (FM), transformed zone depth (TZD) and surface roughness were measured. Particle type (p=0.2746), pressure (p=0.5084) and cyclic loading (p=0.1610) did not influence the flexural strength. Except for the air-abraded group with 110 μm Al2O3 at 3.5 bar, all air-abrasion protocols increased the biaxial flexural strength (MPa) (Controlnon-aged: 1030±153, Controlaged: 1138±138; Experimentalnon-aged: 1307±184-1554±124; Experimentalaged: 1308±118-1451±135) in both non-aged and aged conditions, respectively. Surface roughness (Ra) was the highest with 110 μm Al2O3(0.84 μm. FM values ranged from 0% to 27.21%, higher value for the Rocatec Plus (110 μm SiO2) and 110 μm Al2O3 groups at 3.5 bar pressure. TZD ranged between 0 and 1.43 μm, with the highest values for Rocatec Plus and 110 μm Al2O3 groups at 3.5 bar pressure. © 2013 Elsevier Ltd.
Resumo:
Purpose: To compare the shear bond strength (SBS) of two cements to two Y-TZP ceramics subjected to different surface treatments.Materials and Methods: Zirconia specimens were made from Lava (n = 36) and IPS e.max ZirCAD (n = 36), and their surfaces were treated as follows: no treatment (control), silica coating with 30-mu m silica-modified alumina (Al2O3) particles (CoJet Sand), or coating with liners Lava Ceram for Lava and Intensive ZirLiner for IPS e.max ZirCAD. Composite resin cylinders were bonded to zirconia with Panavia F or RelyX Unicem resin cements. All specimens were thermocycled (6000 cycles at 5 degrees C/55 degrees C) and subjected to SBS testing. Data were analyzed by post-hoc test Tamhane T2 and Scheffe tests (alpha = 0.05). Failure mode was analyzed by stereomicroscope and SEM.Results: With both zirconia brands, CoJet Sand showed significantly higher SBS values than control groups only when used with RelyX Unicem (p = 0.0001). Surface treatment with liners gave higher SBS than control groups with both ceramic brands and cements (p < 0.001). With both zirconia brands, the highest SBS values were obtained with the CoJet and RelyX Unicem combination (> 13.47 MPa). Panavia F cement showed significantly better results when coupled with liner surface treatment rather than with CoJet (p = 0.0001, SBS > 12.23 MPa). In untreated controls, Panavia F showed higher bond strength than RelyX Unicem; the difference was significant (p = 0.016) in IPS e.max ZirCAD. The nontreated specimens and those treated with CoJet Sand exhibited a high percentage of adhesive and mixed A (primarily adhesive) failures, while the specimens treated with liners presented an increase in mixed A and mixed C (primarily cohesive) failures as well as some cohesive failure in the bulk of Lava Ceram for both cements.Conclusion: CoJet Sand and liner application effectively improved the SBS between zirconia and luting cements. This study suggests that different interactions between surface treatments and luting cements yield different SBS: in clinical practice, these interactions should be considered when combining luting cements with surface treatments in order to obtain the maximum bond strength to zirconia restorations.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A polymeric precursor method based on the Pechini process was successfully used to synthesize zirconia-12 mol% ceria ceramic powders, the influence of the main process variables (citric acid-ethylene glycol ratio, citric acid-total oxides ratio and calcination temperature) on phase formation and powder morphology (surface area and crystallite size) were investigated. The thermal decomposition behavior of the precursor is presented. X-ray diffraction (XRD) patterns of powders revealed a crystalline tetragonal zirconia single-phase, with crystallite diameter ranging from 6 to 15 nm. The BET surface areas were relatively high, reaching 95 m(2) g(-1) Nitrogen adsorption/desorption on the powders suggested that nonaggregated powders could be attained, depending on the synthesis conditions. Copyright (C) 1999 John Wiley & Sons, Ltd.
Resumo:
Purpose: This study compared the microtensile bond strength of resin-based cement (Panavia F) to silica-coated, silanized, glass-infiltrated high-alumina zirconia (In-Ceram Zirconia) ceramic in dry conditions and after various aging regimens. Materials and Methods: The specimens were placed in 1 of 4 groups: group 1: dry conditions (immediate testing without aging); group 2: water storage at 37°C for 150 days; group 3: 150 days of water storage followed by thermocycling (× 12,000, 5°C to 55°C); group 4: water storage for 300 days; group 5: water storage for 300 days followed by thermocycling. Results: Group 1 showed a significantly higher microtensile bond strength value (26.2 ± 1 MPa) than the other aging regimens (6.5 ± 1, 6.2 ± 2, 4.5 ± 1, 4.3 ± 1 MPa for groups 2, 3, 4, and 5, respectively) (P < .01). Conclusion: Satisfactory results were seen in dry conditions, but water storage and thermocycling resulted in significantly weaker bonds between the resin cement and the zirconia.
Resumo:
In this work, we investigate the correlations between structural and rheological properties of emulsified aqueous sol and the porous microstructure of monolithic zirconia foams, manufactured by the integrative combination of the sol-gel and emulsification processes. Macroporous zirconia ceramics prepared using different amounts of decahydronaphthalene, as oil phase, are compared in terms of the emulsion microstructure and ceramic porosity. A combination of electrical conductivity, oil droplet diameter, and rheological measurements was used to highlight the key effect of the dynamic structural properties of the emulsion on the porosity of the ceramic zirconia foam. The minimization of drying shrinkage by appropriate sol-gel mineralization of the oil droplet wall enabled versatile and easy tuning of the ceramic foam microstructure, by fine adjustment of the emulsion characteristics. The foam with the highest porosity (90%) and the lowest bulk density (0.40 g cm-3) was prepared from emulsion with 80 wt% of decahydronaphthalene, which also showed a bicontinuous structure and elevated flow consistency. © The Royal Society of Chemistry 2013.
Resumo:
The purpose of this study was to evaluate the influence of zirconia surface treatments on low-temperature degradation (LTD). Disc-shaped specimens were subjected to one of four surface treatments, denoted as C (controlno surface treatment), Si (air abrasion with 30 mu m silica-modified alumina particles), Al (air abrasion with 30 mu m alumina particles), and Gr (grinding with 120 grit diamond discs). Half of the samples were submitted to autoclave treatment for 12 h (127 degrees C, 1.5 bar). Samples were characterized by x-ray diffraction and profilometer analysis and were subjected to biaxial flexural strength test. All of the groups exhibited an increase in the amount of monoclinic phase (m-phase) after LTD. The tm transformation was remarkable for the specimens from the C group, which also exhibited a significant increase in strength. The Gr group also exhibited an increase in strength but lower initial roughness, which probably suppressed LTD on the zirconia surface. The specimens subjected to air abrasion exhibited higher initial amounts of m-phase and a small increase in m-phase after LTD; the strength was not affected in these groups. The effects of LTD were different with each surface treatment applied. Apparently, LTD may be suppressed by smoother surfaces or the presence of an initial amount of m-phase on zirconia surface. (c) 2013 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 101B: 1387-1392, 2013.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Purpose: To determine whether universal primers alone can deliver similar levels of adhesion of resin cement to zirconia ceramic when compared to their application in conjunction with airborne-particle abrasion.Materials and Methods: Sintered zirconia blocks (N = 160) (Lava, 3M ESPE), (5.25 x 5.25 x 3 mm(3)) were embedded in acrylic resin, polished, and randomly distributed into 16 groups (n = 10 per group), according to the factors "universal primer" (8 levels) and "air-particle abrasion" (2 levels): 1. ctr: control, without application of a universal primer; 2. AP: Alloy Primer; 3. MP: Monobond Plus; 4. MZP: Metal Zirconia Primer; 5. MZ: MZ Primer; 6. Sg: Signum Zirconia Bond; 7. SbU: Singlebond Universal; 8. ZP: Z Prime Plus. The universal primers were also used after air abrasion (A) of zirconia to form the following 8 groups: Ctr-A, AP-A, MP-A, MZP-A, MZ-A, Sg-A, SbU-A, and ZP-A. After ultrasonic cleaning, air abrasion was performed using Al2O3 particles (110 mu m, 2.5 bar, 20 s at 10 mm) in a chairside air-abrasion device. After ultrasonic cleaning again, universal primers were applied according to each manufacturer's recommendation. The resin cement (RelyX ARC, 3M ESPE) was built up incrementally and photo-polymerized on the zirconia surface using a silicone mold (empty set = 3.5, height = 3 mm). All specimens were stored in distilled water (60 days at 37 degrees C) and then subjected to shear bond strength testing (SBS) in a universal testing machine (1 mm/min). On a separate set of zirconia specimens, contact angle measurements were made using the sessile drop technique with a goniometer after the application of universal primers on control and air-abraded zirconia surfaces. Data (MPa) were analyzed using one-way ANOVA, Tukey's test, and Student's t-test (alpha = 0.05).Results: When universal primers were used alone, SbU presented significantly higher mean SBS (19.5 +/- 5.8) that did the other primers (0 to 9.9 +/- 6.6) (p = 0.001). When air abraded, the groups AP-A (14.1 +/- 6.1), MP-A (15.9 +/- 5.4), ZP-A (16.9 +/- 7.3), SG-A (19.1 +/- 2.1), SbU-A (12 +/- 1.5) showed significant differences (p = 0.03). Adhesive performance of all universal primers was enhanced after air abrasion, with the exception of the SbU and MZ primers. After air abrasion, contact angle measurements were lower for the each primer (without air abrasion: 28.9 to 83.9; with air abrasion: 27.1 to 63.0), except for MZP.Conclusion: Air abrasion with 110 mu m Al2O3 followed by universal primer application increased the bond strength of tested resin cement to zirconia, with the exception of SbU and MZ.
Resumo:
Zirconia-ceria powders with ceria concentration varying from 0 to 12 mol% were synthesized using a polymeric precursor route based on the Pechini process. Powder characteristics were evaluated with regard to the crystallite size, BET surface area, phase distribution, nitrogen adsorption/desorption behavior, and agglomeration state. Sintering was studied considering the shrinkage rate, densification, grain size, and phase evolution. It was demonstrated that the synthesis method is effective to prepare nanosized powders of tetragonal zirconia single-phase. Sinterability mainly depended on the agglomeration state of powders and the monoclinic phase content, fully tetragonal zirconia ceramic, with grain size of 2.4 mu m, was obtained after addition of at least 9 mol% ceria and sintering at 1500 degrees C for 4 h. (C) 2000 Elsevier B.V. Ltd. All rights reserved.