9 resultados para Yeast function complementation
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Eukaryotic translation initiation factor 5A (eIF5A) is a protein that is highly conserved and essential for cell viability. This factor is the only protein known to contain the unique and essential amino acid residue hypusine. This work focused on the structural and functional characterization of Saccharomyces cerevisiae eIF5A. The tertiary structure of yeast eIF5A was modeled based on the structure of its Leishmania mexicana homologue and this model was used to predict the structural localization of new site-directed and randomly generated mutations. Most of the 40 new mutants exhibited phenotypes that resulted from eIF-5A protein-folding defects. Our data provided evidence that the C-terminal alpha-helix present in yeast eIF5A is an essential structural element, whereas the eIF5A N-terminal 10 amino acid extension not present in archaeal eIF5A homologs, is not. Moreover, the mutants containing substitutions at or in the vicinity of the hypusine modification site displayed nonviable or temperature-sensitive phenotypes and were defective in hypusine modification. Interestingly, two of the temperature-sensitive strains produced stable mutant eIF5A proteins - eIF5A(K56A) and eIF5A(Q22H,L93F)- and showed defects in protein synthesis at the restrictive temperature. Our data revealed important structural features of eIF5A that are required for its vital role in cell viability and underscored an essential function of eIF5A in the translation step of gene expression.
Resumo:
The extracellular glycerol kinase gene from Saccharomyces cerevisiae (GUT]) was cloned into the expression vector pPICZ alpha. A and integrated into the genome of the methylotrophic yeast Pichia pastoris X-33. The presence of the GUT1 insert was confirmed by PCR analysis. Four clones were selected and the functionality of the recombinant enzyme was assayed. Among the tested clones, one exhibited glycerol kinase activity of 0.32 U/mL, with specific activity of 0.025 U/mg of protein. A medium optimized for maximum biomass production by recombinant Pichia pastoris in shaker cultures was initially explored, using 2.31 % (by volume) glycerol as the carbon source. Optimization was carried out by response surface methodology (RSM). In preliminary experiments, following a Plackett-Burman design, glycerol volume fraction (phi(Gly)) and growth time (t) were selected as the most important factors in biomass production. Therefore, subsequent experiments, carried out to optimize biomass production, followed a central composite rotatable design as a function of phi(Gly) and time. Glycerol volume fraction proved to have a significant positive linear effect on biomass production. Also, time was a significant factor (at linear positive and quadratic levels) in biomass production. Experimental data were well fitted by a convex surface representing a second order polynomial model, in which biomass is a function of both factors (R(2)=0.946). Yield and specific activity of glycerol kinase were mainly affected by the additions of glycerol and methanol to the medium. The optimized medium composition for enzyme production was: 1 % yeast extract, 1 % peptone, 100 mM potassium phosphate buffer, pH=6.0, 1.34 % yeast nitrogen base (YNB), 4.10(-5) % biotin, 1 %, methanol and 1 %, glycerol, reaching 0.89 U/mL of glycerol kinase activity and 14.55 g/L of total protein in the medium after 48 h of growth.
Pkc1 acts through Zds1 and Gic1 to suppress growth and cell polarity defects of a yeast eIF5A mutant
Resumo:
eIF5A is a highly conserved putative eukaryotic translation initiation factor that has been implicated in translation initiation, nucleocytoplasmic transport, mRNA decay, and cell proliferation, but with no precise function assigned so far. We have previously shown that high-copy PKCI suppresses the phenotype of tif51A-1, a temperature-sensitive mutant of eIF5A in S. cerevisiae. Here, in an attempt to further understand how Pkc1 functionally interacts with eIF-5A, it was determined that PKCI suppression of tif51A-1 is independent of the cell integrity MAP kinase cascade. Furthermore, two new suppressor genes, ZDS1 and GIC1, were identified. We demonstrated that ZDS1 and ZDS2 are necessary for PKC1, but not for GIC1 suppression. Moreover, high-copy GIC1 also suppresses the growth defect of a PKCI mutant (stt1), suggesting the existence of a Pkc1-Zds1-Gic1 pathway. Consistent with the function of Gic1 in actin organization, the tif51A-1 strain shows an actin polarity defect that is partially recovered by overexpression of Pkc1 and Zds1 as well as Gic1. Additionally, PCL1 and BNI1, important regulators of yeast cell polarity, also suppress tif51A-1 temperature sensitiviiy Taken together, these data strongly Support the correlated involvement of Pkc1 and eIF5A in establishing actin polarity, which is essential for bud formation and G1/S transition in S. cerevisiae.
Resumo:
The putative translation factor eIF5A is essential for cell viability and is highly conserved from archebacteria to mammals. Although this protein was originally identified as a translation initiation factor, subsequent experiments did not support a role for eIF5A in general translation. In this work, we demonstrate that eIF-5A interacts with structural components of the 80S ribosome, as well as with the translation elongation factor 2 (eEF2). Moreover, eIF5A is further shown to cofractionate with monosomes in a translation-dependent manner. Finally, eIF5A mutants show altered polysome profiles and are sensitive to translation inhibitors. Our results re-establish a function for eIF5A in translation and suggest a role for this factor in translation elongation instead of translation initiation. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Paracoccidioides brasiliensis is an important fungal pathogen. The disease it causes, paracoccidioidomycosis (PCM), ranges from localized pulmonary infection to systemic processes that endanger the life of the patient. Paracoccidioides brasiliensis adhesion to host tissues contributes to its virulence, but we know relatively little about molecules and the molecular mechanisms governing fungal adhesion to mammalian cells. Triosephosphate isomerase (TPI: EC 5.3.1.1) of P. brasiliensis (PbTPI) is a fungal antigen characterized by microsequencing of peptides. The protein, which is predominantly expressed in the yeast parasitic phase, localizes at the cell wall and in the cytoplasmic compartment. TPI and the respective polyclonal antibody produced against this protein inhibited the interaction of P. brasiliensis to in vitro cultured epithelial cells. TPI binds preferentially to laminin, as determined by peptide inhibition assays. Collectively, these results suggest that TPI is required for interactions between P. brasiliensis and extracellular matrix molecules such as laminin and that this interaction may play an important role in the fungal adherence and invasion of host cells.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The production, purification, and characterization of an extracellular protease released by Rhodotorula mucilaginosa L7 were evaluated in this study. This strain was isolated from an Antarctic marine alga and previously selected among others based on the capacity to produce the highest extracellular proteolytic activity in preliminary tests. R. mucilaginosa L7 was grown in Saboraud-dextrose medium at 25 °C, and the cell growth, pH of the medium, extracellular protease production and the glucose and protein consumption were determined as a function of time. The protease was then purified, and the effects of pH, temperature, and salt concentration on the catalytic activity and enzyme stability were determined. Enzyme production started at the beginning of the exponential phase of growth and reached a maximum after 48 h, which was accompanied by a decrease in the pH as well as reductions of the protein and glucose concentrations in the medium. The purified protease presented optimal catalytic activity at pH 5.0 and 50 °C. Finally, the enzyme was stable in the presence of high concentrations of NaCl. These characteristics are of interest for future studies and may lead to potential biotechnological applications that require enzyme activity and stability under acidic conditions and/or high salt concentrations.