22 resultados para Yeast function complementation
em CaltechTHESIS
Resumo:
Yeast chromosomes contain sequences called ARSs which function as origins of replication in vitro and in vivo. We have carried out a systematic deletion analysis of ARS1, allowing us to define three functionally distinct domains, designated A, B, and C. Domain A is a sequence of 11 to 19bp, containing the core consensus element that is required for replication. The core consensus sequence, A/TTTTATPuTTTA/T, is conserved at all ARSs sequenced to date. A fragment containing only element A and 8 flanking nucleotides enables autonomous replication of centromeric plasmids. These plasmids replicate very inefficiently, suggesting that flanking sequences must be important for ARS function. Domain B also provides important sequences needed for efficient replication. Deletion of domain B drastically increases the doubling times of transformants and reduces plasmid stability. Domain B contains a potential consensus sequence conserved at some ARSs which overlaps a region of bent DNA. Mutational analysis suggests this bent DNA may be important for ARS function. Deletion of domain C has only a slight effect on replication of plasmids carrying those deletions.
We have identified a protein called ARS binding factor I (ABF-I) that binds to the HMR-E ARS and ARS1. We have purified this protein to homogeneity using conventional and oligonucleotide affinity chromatography. The protein has an apparent molecular weight of 135kDa and is present at about 700 molecules per diploid cell, based on the yield of purified protein and in situ antibody staining. DNaseI footprinting reveals that ABF-I binds sequence-specifically to an approximately 24bp sequence that overlaps element Bat ARSl. This same protein binds to and protects a similar size region at the HMR-E ARS.
We also find evidence for another ARS binding protein, ABF-III, based on DN asei footprint analysis and gel retardation assays. The protein protects approximately 22bp adjacent to the ABF-I site. There appears to be no interaction between ABF-I and ABF-III despite the proximity of their binding sites.
To address the function of ABF-I in DNA replication, we have cloned the ABF-I gene using rabbit polyclonal anti-sera and murine monoclonal antibodies against ABF-I to screen a λgt11 expression library. Four EcoRI restriction fragments were isolated which encoded proteins that were recognized by both polyclonal and monoclonal antibodies. A gene disruption can now be constructed to determine the in vivo function of ABF-I.
Resumo:
The SCF ubiquitin ligase complex of budding yeast triggers DNA replication by cata lyzi ng ubiquitination of the S phase CDK inhibitor SIC1. SCF is composed of several evolutionarily conserved proteins, including ySKP1, CDC53 (Cullin), and the F-box protein CDC4. We isolated hSKP1 in a two-hybrid screen with hCUL1, the human homologue of CDC53. We showed that hCUL1 associates with hSKP1 in vivo and directly interacts with hSKP1 and the human F-box protein SKP2 in vitro, forming an SCF-Iike particle. Moreover, hCUL1 complements the growth defect of yeast CDC53^(ts) mutants, associates with ubiquitination-promoting activity in human cell extracts, and can assemble into functional, chimeric ubiquitin ligase complexes with yeast SCF components. These data demonstrated that hCUL1 functions as part of an SCF ubiquitin ligase complex in human cells. However, purified human SCF complexes consisting of CUL1, SKP1, and SKP2 are inactive in vitro, suggesting that additional factors are required.
Subsequently, mammalian SCF ubiquitin ligases were shown to regulate various physiological processes by targeting important cellular regulators, like lĸBα, β-catenin, and p27, for ubiquitin-dependent proteolysis by the 26S proteasome. Little, however, is known about the regulation of various SCF complexes. By using sequential immunoaffinity purification and mass spectrometry, we identified proteins that interact with human SCF components SKP2 and CUL1 in vivo. Among them we identified two additional SCF subunits: HRT1, present in all SCF complexes, and CKS1, that binds to SKP2 and is likely to be a subunit of SCF5^(SKP2) complexes. Subsequent work by others demonstrated that these proteins are essential for SCF activity. We also discovered that COP9 Signalosome (CSN), previously described in plants as a suppressor of photomorphogenesis, associates with CUL1 and other SCF subunits in vivo. This interaction is evolutionarily conserved and is also observed with other Cullins, suggesting that all Cullin based ubiquitin ligases are regulated by CSN. CSN regulates Cullin Neddylation presumably through CSNS/JAB1, a stochiometric Signalosome subunit and a putative deneddylating enzyme. This work sheds light onto an intricate connection that exists between signal transduction pathways and protein degradation machinery inside the cell and sets stage for gaining further insights into regulation of protein degradation.
Resumo:
The author has constructed a synthetic gene for ∝-lytic protease. Since the DNA sequence of the protein is not known, the gene was designed by using the reverse translation of ∝-lytic protease's amino acid sequence. Unique restriction sites are carefully sought in the degenerate DNA sequence to aid in future mutagenesis studies. The unique restriction sites are designed approximately 50 base pairs apart and their appropriate codons used in the DNA sequence. The codons used to construct the DNA sequence of ∝-lytic protease are preferred codons in E-coli or used in the production of β-lactamase. Codon usage is also distributed evenly to ensure that one particular codon is not heavily used. The gene is essentially constructed from the outside in. The gene is built in a stepwise fashion using plasmids as the vehicles for the ∝-lytic oligomers. The use of plasmids allows the replication and isolation of large quantities of the intermediates during gene synthesis. The ∝-lytic DNA is a double-stranded oligomer that has sufficient overhang and sticky ends to anneal correctly in the vector. After six steps of incorporating ∝-lytic DNA, the gene is completed and sequenced to ensure that the correct DNA sequence is present and that no mutations occurred in the structural gene.
β-lactamase is the other serine hydrolase studied in this thesis. The author used the class A RTEM-1 β- lactamase encoded on the plasmid pBR322 to investigate the roll of the conserved threonine residue at position 71. Cassette mutagenesis was previously used to generate all possible amino acid substitutions at position 71. The work presented here describes the purification and kinetic characterization of a T71H mutant previously constructed by S. Schultz. The mutated gene was transferred into plasmid pJN for expression and induced with IPTG. The enzyme is purified by column chromatography and FPLC to homogeneity. Kinetic studies reveal that the mutant has lower k_(cat) values on benzylpenicillin, cephalothin and 6-aminopenicillanic acid but no changes in k_m except for cephalothin which is approximately 4 times higher. The mutant did not change siginificantly in its pH profile compared to the wild-type enzyme. Also, the mutant is more sensitive to thermal denaturation as compared to the wild-type enzyme. However, experimental evidence indicates that the probable generation of a positive charge at position 71 thermally stabilized the mutant.
Resumo:
In response to infection or tissue dysfunction, immune cells develop into highly heterogeneous repertoires with diverse functions. Capturing the full spectrum of these functions requires analysis of large numbers of effector molecules from single cells. However, currently only 3-5 functional proteins can be measured from single cells. We developed a single cell functional proteomics approach that integrates a microchip platform with multiplex cell purification. This approach can quantitate 20 proteins from >5,000 phenotypically pure single cells simultaneously. With a 1-million fold miniaturization, the system can detect down to ~100 molecules and requires only ~104 cells. Single cell functional proteomic analysis finds broad applications in basic, translational and clinical studies. In the three studies conducted, it yielded critical insights for understanding clinical cancer immunotherapy, inflammatory bowel disease (IBD) mechanism and hematopoietic stem cell (HSC) biology.
To study phenotypically defined cell populations, single cell barcode microchips were coupled with upstream multiplex cell purification based on up to 11 parameters. Statistical algorithms were developed to process and model the high dimensional readouts. This analysis evaluates rare cells and is versatile for various cells and proteins. (1) We conducted an immune monitoring study of a phase 2 cancer cellular immunotherapy clinical trial that used T-cell receptor (TCR) transgenic T cells as major therapeutics to treat metastatic melanoma. We evaluated the functional proteome of 4 antigen-specific, phenotypically defined T cell populations from peripheral blood of 3 patients across 8 time points. (2) Natural killer (NK) cells can play a protective role in chronic inflammation and their surface receptor – killer immunoglobulin-like receptor (KIR) – has been identified as a risk factor of IBD. We compared the functional behavior of NK cells that had differential KIR expressions. These NK cells were retrieved from the blood of 12 patients with different genetic backgrounds. (3) HSCs are the progenitors of immune cells and are thought to have no immediate functional capacity against pathogen. However, recent studies identified expression of Toll-like receptors (TLRs) on HSCs. We studied the functional capacity of HSCs upon TLR activation. The comparison of HSCs from wild-type mice against those from genetics knock-out mouse models elucidates the responding signaling pathway.
In all three cases, we observed profound functional heterogeneity within phenotypically defined cells. Polyfunctional cells that conduct multiple functions also produce those proteins in large amounts. They dominate the immune response. In the cancer immunotherapy, the strong cytotoxic and antitumor functions from transgenic TCR T cells contributed to a ~30% tumor reduction immediately after the therapy. However, this infused immune response disappeared within 2-3 weeks. Later on, some patients gained a second antitumor response, consisted of the emergence of endogenous antitumor cytotoxic T cells and their production of multiple antitumor functions. These patients showed more effective long-term tumor control. In the IBD mechanism study, we noticed that, compared with others, NK cells expressing KIR2DL3 receptor secreted a large array of effector proteins, such as TNF-α, CCLs and CXCLs. The functions from these cells regulated disease-contributing cells and protected host tissues. Their existence correlated with IBD disease susceptibility. In the HSC study, the HSCs exhibited functional capacity by producing TNF-α, IL-6 and GM-CSF. TLR stimulation activated the NF-κB signaling in HSCs. Single cell functional proteome contains rich information that is independent from the genome and transcriptome. In all three cases, functional proteomic evaluation uncovered critical biological insights that would not be resolved otherwise. The integrated single cell functional proteomic analysis constructed a detail kinetic picture of the immune response that took place during the clinical cancer immunotherapy. It revealed concrete functional evidence that connected genetics to IBD disease susceptibility. Further, it provided predictors that correlated with clinical responses and pathogenic outcomes.
Resumo:
During inflammation and infection, hematopoietic stem and progenitor cells (HSPCs) are stimulated to proliferate and differentiate into mature immune cells, especially of the myeloid lineage. MicroRNA-146a (miR-146a) is a critical negative regulator of inflammation. Deletion of the gene encoding miR-146a—expressed in all blood cell types—produces effects that appear as dysregulated inflammatory hematopoiesis, leading to a decline in the number and quality of hematopoietic stem cells (HSCs), excessive myeloproliferation, and, ultimately, to exhaustion of the HSCs and hematopoietic neoplasms. Six-week-old deleted mice are normal, with no effect on cell numbers, but by 4 months bone marrow hypercellularity can be seen, and by 8 months marrow exhaustion is becoming evident. The ability of HSCs to replenish the entire hematopoietic repertoire in a myelo-ablated mouse also declines precipitously as miR-146a-deficient mice age. In the absence of miR-146a, LPS-mediated serial inflammatory stimulation accelerates the effects of aging. This chronic inflammatory stress on HSCs in deleted mice involves a molecular axis consisting of upregulation of the signaling protein TRAF6 leading to excessive activity of the transcription factor NF-κB and overproduction of the cytokine IL-6. At the cellular level, transplant studies show that the defects are attributable to both an intrinsic problem in the miR-146a-deficient HSCs and extrinsic effects of miR-146a-deficient lymphocytes and non-hematopoietic cells. This study has identified a microRNA, miR-146a, to be a critical regulator of HSC homeostasis during chronic inflammatory challenge in mice and has provided a molecular connection between chronic inflammation and the development of bone marrow failure and myeloproliferative neoplasms. This may have implications for human hematopoietic malignancies, such as myelodysplastic syndrome, which frequently displays downregulated miR-146a expression.
Resumo:
The Drosophila compound eye has provided a genetic approach to understanding the specification of cell fates during differentiation. The eye is made up of some 750 repeated units or ommatidia, arranged in a lattice. The cellular composition of each ommatidium is identical. The arrangement of the lattice and the specification of cell fates in each ommatidium are thought to occur in development through cellular interactions with the local environment. Many mutations have been studied that disrupt the proper patterning and cell fating in the eye. The eyes absent (eya) mutation, the subject of this thesis, was chosen because of its eyeless phenotype. In eya mutants, eye progenitor cells undergo programmed cell death before the onset of patterning has occurred. The molecular genetic analysis of the gene is presented.
The eye arises from the larval eye-antennal imaginal disc. During the third larval instar, a wave of differentiation progresses across the disc, marked by a furrow. Anterior to the furrow, proliferating cells are found in apparent disarray. Posterior to the furrow, clusters of differentiating cells can be discerned, that correspond to the ommatidia of the adult eye. Analysis of an allelic series of eya mutants in comparison to wild type revealed the presence of a selection point: a wave of programmed cell death that normally precedes the furrow. In eya mutants, an excessive number of eye progenitor cells die at this selection point, suggesting the eya gene influences the distribution of cells between fates of death and differentiation.
In addition to its role in the eye, the eya gene has an embryonic function. The eye function is autonomous to the eye progenitor cells. Molecular maps of the eye and embryonic phenotypes are different. Therefore, the function of eya in the eye can be treated independently of the embryonic function. Cloning of the gene reveals two cDNA's that are identical except for the use of an alternatively-spliced 5' exon. The predicted protein products differ only at the N-termini. Sequence analysis shows these two proteins to be the first of their kind to be isolated. Trangenic studies using the two cDNA's show that either gene product is able to rescue the eye phenotype of eya mutants.
The eya gene exhibits interallelic complementation. This interaction is an example of an "allelic position effect": an interaction that depends on the relative position in the genome of the two alleles, which is thought to be mediated by chromosomal pairing. The interaction at eya is essentially identical to a phenomenon known as transvection, which is an allelic position effect that is sensitive to certain kinds of chromosomal rearrangements. A current model for the mechanism of transvection is the trans action of gene regulatory regions. The eya locus is particularly well suited for the study of transvection because the mutant phenotypes can be quantified by scoring the size of the eye.
The molecular genetic analysis of eya provides a system for uncovering mechanisms underlying differentiation, developmentally regulated programmed cell death, and gene regulation.
Resumo:
Despite the complexity of biological networks, we find that certain common architectures govern network structures. These architectures impose fundamental constraints on system performance and create tradeoffs that the system must balance in the face of uncertainty in the environment. This means that while a system may be optimized for a specific function through evolution, the optimal achievable state must follow these constraints. One such constraining architecture is autocatalysis, as seen in many biological networks including glycolysis and ribosomal protein synthesis. Using a minimal model, we show that ATP autocatalysis in glycolysis imposes stability and performance constraints and that the experimentally well-studied glycolytic oscillations are in fact a consequence of a tradeoff between error minimization and stability. We also show that additional complexity in the network results in increased robustness. Ribosome synthesis is also autocatalytic where ribosomes must be used to make more ribosomal proteins. When ribosomes have higher protein content, the autocatalysis is increased. We show that this autocatalysis destabilizes the system, slows down response, and also constrains the system’s performance. On a larger scale, transcriptional regulation of whole organisms also follows architectural constraints and this can be seen in the differences between bacterial and yeast transcription networks. We show that the degree distributions of bacterial transcription network follow a power law distribution while the yeast network follows an exponential distribution. We then explored the evolutionary models that have previously been proposed and show that neither the preferential linking model nor the duplication-divergence model of network evolution generates the power-law, hierarchical structure found in bacteria. However, in real biological systems, the generation of new nodes occurs through both duplication and horizontal gene transfers, and we show that a biologically reasonable combination of the two mechanisms generates the desired network.
Resumo:
Pre-mRNA splicing requires interaction of cis- acting intron sequences with trans -acting factors: proteins and small nuclear ribonucleoproteins (snRNPs). The assembly of these factors into a large complex, the spliceosome, is essential for the subsequent two step splicing reaction. First, the 5' splice site is cleaved and free exon 1 and a lariat intermediate (intron- exon2) form. In the second reaction the 3' splice site is cleaved the exons ligated and lariat intron released. A combination of genetic and biochemical techniques have been used here to study pre-mRNA splicing in yeast.
Yeast introns have three highly conserved elements. We made point mutations within these elements and found that most of them affect splicing efficiency in vivo and in vitro, usually by inhibiting spliceosome assembly.
To study trans -acting splicing factors we generated and screened a bank of temperature- sensitive (ts) mutants. Eleven new complementation groups (prp17 to prp27) were isolated. The four phenotypic classes obtained affect different steps in splicing and accumulate either: 1) pre-mRNA, 2) lariat intermediate, 3) excised intron or 4) both pre-mRNA and intron. The latter three classes represent novel phenotypes. The excised intron observed in one mutant: prp26 is stabilized due to protection in a snRNP containing particle. Extracts from another mutant: prpl8 are heat labile and accumulate lariat intermediate and exon 1. This is especially interesting as it allows analysis of the second splicing reaction. In vitro complementation of inactivated prp18 extracts does not require intact snRNPs. These studies have also shown the mutation to be in a previously unknown splicing protein. A specific requirement for A TP is also observed for the second step of splicing. The PRP 18 gene has been cloned and its polyadenylated transcript identified.
Resumo:
During early stages of Drosophila development the heat shock response cannot be induced. It is reasoned that the adverse effects on cell cycle and cell growth brought about by Hsp70 induction must outweigh the beneficial aspects of Hsp70 induction in the early embryo. Although the Drosophila heat shock transcription factor (dHSF) is abundant in the early embryo, it does not enter the nucleus in response to heat shock. In older embryos and in cultured cells the factor is localized within the nucleus in an apparent trimeric structure that binds DNA with high affinity. The domain responsible for nuclear localization upon stress resides between residues 390 and 420 of the dHSF. Using that domain as bait in a yeast two-hybrid system we now report the identification and cloning of a nuclear transport protein Drosophila karyopherin-α3(dKap- α3). Biochemical methods demonstrate that the dKap-α3 protein binds specifically to the dHSF's nuclear localization sequence (NLS). Furthermore, the dKap-α3 protein does not associate with NLSs that contain point mutations which are not transported in vivo. Nuclear docking studies also demonstrate specific nuclear targeting of the NLS substrate by dKap-α3.Consistant with previous studies demonstrating that early Drosophila embryos are refractory to heat shock as a result of dHSF nuclear exclusion, we demonstrate that the early embryo is deficient in dKap-α3 protein through cycle 12. From cycle 13 onward the transport factor is present and the dHSF is localized within the nucleus thus allowing the embryo to respond to heat shock.
The pair-rule gene fushi tarazu (ftz) is a well-studied zygotic segmentation gene that is necessary for the development of the even-numbered parasegments in Drosophila melanogastor. During early embryogenesis, ftz is expressed in a characteristic pattern of seven stripes, one in each of the even-numbered parasegments. With a view to understand how ftz is transcriptionally regulated, cDNAs that encode transcription factors that bind to the zebra element of the ftz promoter have been cloned. Chapter Ill reports the cloning and characterization of the eDNA encoding zeb-1 (zebra element binding protein), a novel steroid receptor-like molecule that specifically binds to a key regulatory element of the ftz promoter. In transient transfection assays employing Drosophila tissue culture cells, it has been shown that zeb-1 as well as a truncated zeb-1 polypeptide (zeb480) that lacks the putative ligand binding domain function as sequencespecific trans-activators of the ftz gene.
The Oct factors are members of the POU family of transcription factors that are shown to play important roles during development in mammals. Chapter IV reports the eDNA cloning and expression of a Drosophila Oct transcription factor. Whole mount in-situ hybridization experiments revealed that the spatial expression patterns of this gene during embryonic development have not yet been observed for any other gene. In early embryogenesis, its transcripts are transiently expressed as a wide uniform band from 20-40% of the egg length, very similar to that of gap genes. This pattern progressively resolves into a series of narrower stripes followed by expression in fourteen stripes. Subsequently, transcripts from this gene are expressed in the central nervous system and the brain. When expressed in the yeast Saccharomyces cerevisiae, this Drosophila factor functions as a strong, octamer-dependent activator of transcription. The data strongly suggest possible functions for the Oct factor in pattern formation in Drosophila that might transcend the boundaries of genetically defined segmentation genes.
Resumo:
The Edge Function method formerly developed by Quinlan(25) is applied to solve the problem of thin elastic plates resting on spring supported foundations subjected to lateral loads the method can be applied to plates of any convex polygonal shapes, however, since most plates are rectangular in shape, this specific class is investigated in this thesis. The method discussed can also be applied easily to other kinds of foundation models (e.g. springs connected to each other by a membrane) as long as the resulting differential equation is linear. In chapter VII, solution of a specific problem is compared with a known solution from literature. In chapter VIII, further comparisons are given. The problems of concentrated load on an edge and later on a corner of a plate as long as they are far away from other boundaries are also given in the chapter and generalized to other loading intensities and/or plates springs constants for Poisson's ratio equal to 0.2
Resumo:
Mitochondria can remodel their membranes by fusing or dividing. These processes are required for the proper development and viability of multicellular organisms. At the cellular level, fusion is important for mitochondrial Ca2+ homeostasis, mitochondrial DNA maintenance, mitochondrial membrane potential, and respiration. Mitochondrial division, which is better known as fission, is important for apoptosis, mitophagy, and for the proper allocation of mitochondria to daughter cells during cellular division.
The functions of proteins involved in fission have been best characterized in the yeast model organism Sarccharomyces cerevisiae. Mitochondrial fission in mammals has some similarities. In both systems, a cytosolic dynamin-like protein, called Dnm1 in yeast and Drp1 in mammals, must be recruited to the mitochondrial surface and polymerized to promote membrane division. Recruitment of yeast Dnm1 requires only one mitochondrial outer membrane protein, named Fis1. Fis1 is conserved in mammals, but its importance for Drp1 recruitment is minor. In mammals, three other receptor proteins—Mff, MiD49, and MiD51—play a major role in recruiting Drp1 to mitochondria. Why mammals require three additional receptors, and whether they function together or separately, are fundamental questions for understanding the mechanism of mitochondrial fission in mammals.
We have determined that Mff, MiD49, or MiD51 can function independently of one another to recruit Drp1 to mitochondria. Fis1 plays a minor role in Drp1 recruitment, suggesting that the emergence of these additional receptors has replaced the system used by yeast. Additionally, we found that Fis1/Mff and the MiDs regulate Drp1 activity differentially. Fis1 and Mff promote constitutive mitochondrial fission, whereas the MiDs activate recruited Drp1 only during loss of respiration.
To better understand the function of the MiDs, we have determined the atomic structure of the cytoplasmic domain of MiD51, and performed a structure-function analysis of MiD49 based on its homology to MiD51. MiD51 adopts a nucleotidyl transferase fold, and binds ADP as a co-factor that is essential for its function. Both MiDs contain a loop segment that is not present in other nucleotidyl transferase proteins, and this loop is used to interact with Drp1 and to recruit it to mitochondria.
Resumo:
Understanding how transcriptional regulatory sequence maps to regulatory function remains a difficult problem in regulatory biology. Given a particular DNA sequence for a bacterial promoter region, we would like to be able to say which transcription factors bind there, how strongly they bind, and whether they interact with each other and/or RNA polymerase, with the ultimate objective of integrating knowledge of these parameters into a prediction of gene expression levels. The theoretical framework of statistical thermodynamics provides a useful framework for doing so, enabling us to predict how gene expression levels depend on transcription factor binding energies and concentrations. We used thermodynamic models, coupled with models of the sequence-dependent binding energies of transcription factors and RNAP, to construct a genotype to phenotype map for the level of repression exhibited by the lac promoter, and tested it experimentally using a set of promoter variants from E. coli strains isolated from different natural environments. For this work, we sought to ``reverse engineer'' naturally occurring promoter sequences to understand how variations in promoter sequence affects gene expression. The natural inverse of this approach is to ``forward engineer'' promoter sequences to obtain targeted levels of gene expression. We used a high precision model of RNAP-DNA sequence dependent binding energy, coupled with a thermodynamic model relating binding energy to gene expression, to predictively design and verify a suite of synthetic E. coli promoters whose expression varied over nearly three orders of magnitude.
However, although thermodynamic models enable predictions of mean levels of gene expression, it has become evident that cell-to-cell variability or ``noise'' in gene expression can also play a biologically important role. In order to address this aspect of gene regulation, we developed models based on the chemical master equation framework and used them to explore the noise properties of a number of common E. coli regulatory motifs; these properties included the dependence of the noise on parameters such as transcription factor binding strength and copy number. We then performed experiments in which these parameters were systematically varied and measured the level of variability using mRNA FISH. The results showed a clear dependence of the noise on these parameters, in accord with model predictions.
Finally, one shortcoming of the preceding modeling frameworks is that their applicability is largely limited to systems that are already well-characterized, such as the lac promoter. Motivated by this fact, we used a high throughput promoter mutagenesis assay called Sort-Seq to explore the completely uncharacterized transcriptional regulatory DNA of the E. coli mechanosensitive channel of large conductance (MscL). We identified several candidate transcription factor binding sites, and work is continuing to identify the associated proteins.
Resumo:
The spin dependent cross sections, σT1/2 and σT3/2 , and asymmetries, A∥ and A⊥ for 3He have been measured at the Jefferson Lab's Hall A facility. The inclusive scattering process 3He(e,e)X was performed for initial beam energies ranging from 0.86 to 5.1 GeV, at a scattering angle of 15.5°. Data includes measurements from the quasielastic peak, resonance region, and the deep inelastic regime. An approximation for the extended Gerasimov-Drell-Hearn integral is presented at a 4-momentum transfer Q2 of 0.2-1.0 GeV2.
Also presented are results on the performance of the polarized 3He target. Polarization of 3He was achieved by the process of spin-exchange collisions with optically pumped rubidium vapor. The 3He polarization was monitored using the NMR technique of adiabatic fast passage (AFP). The average target polarization was approximately 35% and was determined to have a systematic uncertainty of roughly ±4% relative.
Resumo:
The yeast Saccharomyces cerevisiae contains a family of hsp70 related genes. One member of this family, SSA1, encodes a 70kD heat-shock protein which in addition to its heat inducible expression has a significant basal level of expression. The first 500 bp upstream of the SSA1 start point of transcription was examined by DNAse I protection analysis. The results reveal the presence of at least 14 factor binding sites throughout the upstream promoter region. The function of these binding sites has been examined using a series of 5' promoter deletions fused to the recorder gene lacZ in a centromere-containing yeast shuttle vector. The following sites have been identified in the promoter and their activity in yeast determined individually with a centromere-based recorder plasmid containing a truncated CYC1 /lacZ fusion: a heat-shock element or HSE which is sufficient to convey heat-shock response on the recorder plasmid; a homology to the SV40 'core' sequence which can repress the GCN4 recognition element (GCRE) and the yAP1 recognition element (ARE), and has been designated a upstream repression element or URE; a 'G'-rich region named G-box which can also convey heatshock response on the recorder plasmid; and a purine-pyrimidine alternating sequence name GT-box which is an activator of transcription. A series of fusion constructs were made to identify a putative silencer-like element upstream of SSA1. This element is position dependent and has been localized to a region containing both an ABF1 binding site and a RAP1 binding site. Five site-specific DNA-binding factors are identified and their purification is presented: the heat-shock transcription factor or HSTF, which recognizes the HSE; the G-box binding factor or GBF; the URE recognition factor or URF; the GT-box binding factor; and the GC-box binding factor or yeast Sp1.
MicroRNA-132 is a physiological regulator of hematopoietic stem cell function and B-cell development
Resumo:
MicroRNAs are a class of small non-coding RNAs that negatively regulate gene expression. Several microRNAs have been implicated in altering hematopoietic cell fate decisions. Importantly, deregulation of many microRNAs can lead to deleterious consequences in the hematopoietic system, including the onset of cancer, autoimmunity, or a failure to respond effectively to infection. As such, microRNAs fine-tune the balance between normal hematopoietic output and pathologic consequences. In this work, we explore the role of two microRNAs, miR-132 and miR-125b, in regulating hematopoietic stem cell (HSC) function and B cell development. In particular, we uncover the role of miR-132 in maintaining the appropriate balance between self-renewal, differentiation, and survival in aging HSCs by buffering the expression of a critical transcription factor, FOXO3. By maintain this balance, miR-132 may play a critical role in preventing aging-associated hematopoietic conditions such as autoimmune disease and cancer. We also find that miR-132 plays a critical role in B cell development by targeting a key transcription factor, Sox4, that is responsible for the differentiation of pro-B cells into pre-B cells. We find that miR-132 regulates B cell apoptosis, and by delivering miR-132 to mice that are predisposed to developing B cell cancers, we can inhibit the formation of these cancers and improve the survival of these mice. In addition to miR-132, we uncovered the role of another critical microRNA, miR-125b, that potentiates hematopoietic stem cell function. We found that enforced expression of miR-125b causes an aggressive myeloid leukemia by downregulation of its target Lin28a. Importantly, miR-125b also plays a critical role in inhibiting the formation of pro-B cells. Thus, we have discovered two microRNAs with important roles in regulating normal hematopoiesis, and whose dregulation can lead to deleterious consequences such as cancer in the aging hematopoietic system. Both miR-132 and miR-125b may therefore be targeted for therapeutics to inhibit age-related immune diseases associated with the loss of HSC function and cancer progression.