73 resultados para Visual robot control

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The use of mobile robots turns out to be interesting in activities where the action of human specialist is difficult or dangerous. Mobile robots are often used for the exploration in areas of difficult access, such as rescue operations and space missions, to avoid human experts exposition to risky situations. Mobile robots are also used in agriculture for planting tasks as well as for keeping the application of pesticides within minimal amounts to mitigate environmental pollution. In this paper we present the development of a system to control the navigation of an autonomous mobile robot through tracks in plantations. Track images are used to control robot direction by preprocessing them to extract image features. Such features are then submitted to a support vector machine in order to find out the most appropriate route. The overall goal of the project to which this work is connected is to develop a real time robot control system to be embedded into a hardware platform. In this paper we report the software implementation of a support vector machine, which so far presented around 93% accuracy in predicting the appropriate route. © 2012 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

To date, different techniques of navigation for mobile robots have been developed. However, the experimentation of these techniques is not a trivial task because usually it is not possible to reuse the developed control software due to system incompabilities. This paper proposes a software platform that provides means for creating reusable software modules through the standardization of software interfaces, which represent the various robot modules. © 2012 ICROS.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The use of mobile robots turns out to be interesting in activities where the action of human specialist is difficult or dangerous. Mobile robots are often used for the exploration in areas of difficult access, such as rescue operations and space missions, to avoid human experts exposition to risky situations. Mobile robots are also used in agriculture for planting tasks as well as for keeping the application of pesticides within minimal amounts to mitigate environmental pollution. In this paper we present the development of a system to control the navigation of an autonomous mobile robot through tracks in plantations. Track images are used to control robot direction by pre-processing them to extract image features. Such features are then submitted to a support vector machine and an artificial neural network in order to find out the most appropriate route. A comparison of the two approaches was performed to ascertain the one presenting the best outcome. The overall goal of the project to which this work is connected is to develop a real time robot control system to be embedded into a hardware platform. In this paper we report the software implementation of a support vector machine and of an artificial neural network, which so far presented respectively around 93% and 90% accuracy in predicting the appropriate route. (C) 2013 The Authors. Published by Elsevier B.V. Selection and peer review under responsibility of the organizers of the 2013 International Conference on Computational Science

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The use of mobile robots in the agriculture turns out to be interesting in tasks of cultivation and application of pesticides in minute quantities to reduce environmental pollution. In this paper we present the development of a system to control an autonomous mobile robot navigation through tracks in plantations. Track images are used to control robot direction by preprocessing them to extract image features, and then submitting such characteristic features to a support vector machine to find out the most appropriate route. As the overall goal of the project to which this work is connected is the robot control in real time, the system will be embedded onto a hardware platform. However, in this paper we report the software implementation of a support vector machine, which so far presented around 93% accuracy in predicting the appropriate route.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Difficulty with literacy acquisition is only one of the symptoms of developmental dyslexia. Dyslexic children also show poor motor coordination and postural control. Those problems could be associated with automaticity, i.e., difficulty in performing a task without dispending a fair amount of conscious efforts. If this is the case, dyslexic children would show difficulties in using "unperceived" sensory cues to control body sway. Therefore, the aim of the study was to examine postural control performance and the coupling between visual information and body sway in dyslexic children. Ten dyslexic children and 10 non-dyslexic children stood upright inside a moving room that remained stationary or oscillated back and forward at frequencies of 0.2 or 0.5 Hz. Body sway magnitude and the relationship between the room's movement and body sway were examined. The results indicated that dyslexic children oscillated more than non-dyslexic children in both stationary and oscillating conditions. Visual manipulation induced body sway in all children but the coupling between visual information and body sway was weaker and more variable in dyslexic children. Based upon these results, we can suggest that dyslexic children use visual information to postural control with the same underlying processes as non-dyslexic children; however, dyslexic children show poorer performance and more variability while relating visual information and motor action even in a task that does not require an active cognitive and conscious motor involvement, which may be a further evidence of automaticity problem. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The purpose of this study was to examine the effects of visual and somatosensory information on body sway in individuals with Down syndrome (DS). Nine adults with DS (19-29 years old) and nine control subjects (CS) (19-29 years old) stood in the upright stance in four experimental conditions: no vision and no touch; vision and no touch; no vision and touch; and vision and touch. In the vision condition, participants looked at a target placed in front of them; in the no vision condition, participants wore a black cotton mask. In the touch condition, participants touched a stationary surface with their right index finger; in the no touch condition, participants kept their arms hanging alongside their bodies. A force plate was used to estimate center of pressure excursion for both anterior-posterior and medial-lateral directions. MANOVA revealed that both the individuals with DS and the control subjects used vision and touch to reduce overall body sway, although individuals with DS still oscillated more than did the CS. These results indicate that adults with DS are able to use sensory information to reduce body sway, and they demonstrate that there is no difference in sensory integration between the individuals with DS and the CS.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background: Aging is characterized by a decline in the postural control performance, which is based on a coherent and stable coupling between sensory information and motor action. Therefore, changes in postural control in elderlies can be related to changes in this coupling. In addition, it has been observed that physical activity seems to improve postural control performance in elderlies. These improvements can be due to changes in the coupling between sensory information and motor action related to postural control. Objective: the purpose of this study was to verify the coupling between visual information and body sway in active and sedentary elderlies. Methods: Sixteen sedentary elderlies ( SE), 16 active elderlies ( AE) and 16 young adults ( YA) were asked to stand upright inside a moving room in two experimental conditions: ( 1) discrete movement and ( 2) continuous movement of the room. Results: In the continuous condition, the results showed that the coupling between the movement of the room and body sway was stronger and more stable for SE and AE compared to YA. In the discrete condition, SE showed larger body displacement compared to AE and YA. Conclusions: SE have more difficulty to discriminate and to integrate sensory information than AE and YA indicating that physical activity may improve sensory integration. Copyright (C) 2005 S. Karger AG, Basel.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Three-dimensional kinematic analysis of line of gaze, arm and ball was used to describe the visual and motor behaviour of male adolescents diagnosed with attention deficit hyperactivity disorder (ADHD). The ADHD participants were tested when both on (ADHD-On) and off (ADHD-Off) their medication and compared to age-matched normal controls in a modified table tennis task that required tracking the ball and hitting to cued right and left targets. Long-duration information was provided by a pre-cue, in which the target was illuminated approximately 2 s before the serve, and short-duration information by an early-cue illuminated about 350 ms after the serve, leaving -500 ms to select the target and perform the action. The ADHD groups differed significantly from the control group in both the pre-cue and early-cue conditions in being less accurate, in having a later onset and duration of pursuit tracking, and a higher frequency of gaze on and off the ball. The use of medication significantly reduced the gaze frequency of the ADHD participants, but surprisingly this did not lead to an increase in pursuit tracking, suggesting a barrier was reached beyond which ball flight information could not be processed. The control and ADHD groups did not differ in arm movement onset, duration and velocity in the short-duration early-cue condition; in the long-duration pre-cue condition, however, the ADHD group's movement time onset and arm velocity differed significantly from controls. The results show that the ADHD groups were able to process short-duration information without experiencing adverse effects on their motor behaviour; however, long-duration information contributed to irregular movement control.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Single Limb Stance under visual and proprioceptive disturbances is largely used in clinical settings in order to improve balance in a wide range of functional disabilities. However, the proper role of vision and proprioception in SLS is not completely understood. The objectives of this study were to test the hypotheses that when ankle proprioception is perturbed, the role of vision in postural control increases according to the difficulty of the standing task. And to test the effect of vision during postural adaptation after withdrawal of the somesthetic perturbation during double and single limb stance. Eleven males were submitted to double (DLS) and single limb (SLS) stances under conditions of normal or reduced vision, both with normal and perturbed proprioception. Center of pressure parameters were analyzed across conditions. Vision had a main effect in SLS, whereas proprioception perturbation showed effects only during DLS. Baseline stability was promptly achieved independently of visual input after proprioception reintegration. In conclusion, the role of vision increases in SLS. After proprioception reintegration, vision does not affect postural recovery. Balance training programs must take that into account. © 2011 Elsevier Ltd.