30 resultados para VORTICAL FLOWS

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is concerned with the numerical solutions of time dependent two-dimensional incompressible flows. By using the primitive variables of velocity and pressure, the Navier-Stokes and mass conservation equations are solved by a semi-implicit finite difference projection method. A new bounded higher order upwind convection scheme is employed to deal with the non-linear (advective) terms. The procedure is an adaptation of the GENSMAC (J. Comput. Phys. 1994; 110: 171-186) methodology for calculating confined and free surface fluid flows at both low and high Reynolds numbers. The calculations were performed by using the 2D version of the Freeflow simulation system (J. Comp. Visual. Science 2000; 2:199-210). In order to demonstrate the capabilities of the numerical method, various test cases are presented. These are the fully developed flow in a channel, the flow over a backward facing step, the die-swell problem, the broken dam flow, and an impinging jet onto a flat plate. The numerical results compare favourably with the experimental data and the analytical solutions. Copyright (c) 2006 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work presents simulations of the Electrofluid Dynamic energy conversion process in slender channel devices having very small particles (in both micro and nano scales) as charge carriers. Solutions are discussed for a system composed by coupled differential equations, which includes the equation for the total current along the channel, the equations for total energy and momentum of the mixture (gas and solid particles), the continuity equation and the equations for energy and momentum of a single particle. Results for suspended particles of higher diameters have been previously published in the Literature, but the simulations here presented exhibit an appreciable increase in the values for output currents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work presents simulations of the Electrofluid Dynamic energy conversion process in slender channel devices having very small particles (in both micro and nano scales) as charge carriers. Solutions are discussed for a system composed by coupled differential equations, which includes the equation for the total current along the channel, the equations for total energy and momentum of the mixture (gas and solid particles), the continuity equation and the equations for energy and momentum of a single particle. Results for suspended particles of higher diameters have been previously published in the Literature, but the simulations here presented exhibit an appreciable increase in the values for output currents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A deformation parameter of a bihamiltonian structure of hydrodynamic type is shown to parametrize different extensions of the AKNS hierarchy to include negative flows. This construction establishes a purely algebraic link between, on the one hand, two realizations of the first negative flow of the AKNS model and, on the other, two-component generalizations of Camassa-Holmand Dym-type equations. The two-component generalizations of Camassa-Holm- and Dym-type equations can be obtained from the negative-order Hamiltonians constructed from the Lenard relations recursively applied on the Casimir of the first Poisson bracket of hydrodynamic type. The positive-order Hamiltonians, which follow froth the Lenard scheme applied on the Casimir of the second Poisson bracket of hydrodynamic type, are shown to coincide with the Hamiltonians of the AKNS model. The AKNS Hamiltonians give rise to charges conserved with respect to equations of motion of two-component Camassa-Holm- and two-component Dym-type equations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents numerical simulations of incompressible fluid flows in the presence of a magnetic field at low magnetic Reynolds number. The equations governing the flow are the Navier-Stokes equations of fluid motion coupled with Maxwell's equations of electromagnetics. The study of fluid flows under the influence of a magnetic field and with no free electric charges or electric fields is known as magnetohydrodynamics. The magnetohydrodynamics approximation is considered for the formulation of the non-dimensional problem and for the characterization of similarity parameters. A finite-difference technique is used to discretize the equations. In particular, an extension of the generalized Peaceman and Rachford alternating-direction implicit (ADI) scheme for simulating two-dimensional fluid flows is presented. The discretized conservation equations are solved in stream function-vorticity formulation. We compare the ADI and generalized ADI schemes, and show that the latter is more efficient in simulating low Reynolds number and magnetic Reynolds number problems. Numerical results demonstrating the applicability of this technique are also presented. The simulation of incompressible magneto hydrodynamic fluid flows is illustrated by numerical solution for two-dimensional cases. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article we investigate experimentally the potential of using pulsating flows for drying of food grains. A Rijke type oscillator with an electrical heater was used to dry batches of soybean grains. Drying temperatures were 60 degreesC. We observed a decrease on the drying time for pulsating flows when compared with the conventional non-pulsating regime. This decrease depended on sample initial moisture content and weight, and on final sample moisture content. (C) 2004 Elsevier B.V. Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The element-free Galerkin method (EFGM) is a very attractive technique for solutions of partial differential equations, since it makes use of nodal point configurations which do not require a mesh. Therefore, it differs from FEM-like approaches by avoiding the need of meshing, a very demanding task for complicated geometry problems. However, the imposition of boundary conditions is not straightforward, since the EFGM is based on moving-least-squares (MLS) approximations which are not necessarily interpolants. This feature requires, for instance, the introduction of modified functionals with additional unknown parameters such as Lagrange multipliers, a serious drawback which leads to poor conditionings of the matrix equations. In this paper, an interpolatory formulation for MLS approximants is presented: it allows the direct introduction of boundary conditions, reducing the processing time and improving the condition numbers. The formulation is applied to the study of two-dimensional magnetohydrodynamic flow problems, and the computed results confirm the accuracy and correctness of the proposed formulation. (C) 2002 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A parallel technique, for a distributed memory machine, based on domain decomposition for solving the Navier-Stokes equations in cartesian and cylindrical coordinates in two dimensions with free surfaces is described. It is based on the code by Tome and McKee (J. Comp. Phys. 110 (1994) 171-186) and Tome (Ph.D. Thesis, University of Strathclyde, Glasgow, 1993) which in turn is based on the SMAC method by Amsden and Harlow (Report LA-4370, Los Alamos Scientific Laboratory, 1971), which solves the Navier-Stokes equations in three steps: the momentum and Poisson equations and particle movement, These equations are discretized by explicit and 5-point finite differences. The parallelization is performed by splitting the computation domain into vertical panels and assigning each of these panels to a processor. All the computation can then be performed using nearest neighbour communication. Test runs comparing the performance of the parallel with the serial code, and a discussion of the load balancing question are presented. PVM is used for communication between processes. (C) 1999 Elsevier B.V. B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, the meshless method is introduced to magnetohydrodynamics. A numerical scheme based on the element-free Galerkin method is used to solve the laminar steady-state two-dimensional fully developed magnetohydrodynamic flow in a rectangular duct. Accurate and convergent solutions are achieved for low to moderately high Hartmann numbers.