102 resultados para VISIBLE PHOTOLUMINESCENCE
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
intense photoluminescence in the visible region was observed at room temperature in standard soda-lime-silica glass powder, mechanically milled in a high-energy attrition mill. The emission band maximum shows an interesting dependence on the exciting wavelength, suggesting the possibility to tune the PL emission. These findings indicate that the photoluminescence may be directly related to unsatisfied chemical bonds correlated with the high surface area. The Raman scattering and ultraviolet-visible optical reflectance measurements corroborate this assertion. Transmission electron microscopy measurements indicate that samples milled more than 10 h present the formation of nanocrystallites with about 10-20 nm. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Photoluminescence at room temperature in Ba(Zr0.25Ti0.75)O-3 thin films was explained by the degree of structural order-disorder. Ultraviolet-visible absorption spectroscopy, photoluminescence, and first principles quantum mechanical measurements were performed. The film annealed at 400 degrees C for 4 h presents intense visible photoluminescence behavior at room temperature. The increase of temperature and annealing time creates [ZrO6]-[TiO6] clusters in the lattice leading to the trapping of electrons and holes. Thus, [ZrO5]-[TiO6]/[ZrO6]-[TiO6] clusters were the main reason for the photoluminescence behavior.
Resumo:
The nature of intense visible photoluminescence at room temperature of SrWO4 (SWO) non-crystalline thin films is discussed in the light of experimental results and theoretical calculations. The SWO thin films were synthesized by the polymeric precursors method. Their structural properties have been obtained by X-ray diffraction data and the corresponding photoluminescence (PL) spectra have been measured. The UV-vis optical spectra measurements suggest the creation of localized states in the disordered structure. The photoluminescence measurements reveal that the PL changes with the degree of disorder in the SWO thin film. To understand the origin of visible PL at room temperature in disordered SWO, we performed quantum-mechanical calculations on crystalline and disordered SWO periodic models. Their electronic structures are analyzed in terms of DOS, hand dispersion and charge densities. We used DFT method with the hybrid non-local B3LYP approximation. The polarization induced by the symmetry break and the existence of localized levels favors the creation of trapped holes and electrons, giving origin to the room temperature photoluminescence phenomenon in the SWO thin films. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
Disordered and crystalline Ba0.45Sr0.55TiO3 (BST) powder processed at low temperature was synthesized by the polymeric precursor method. The single-phase perovskite structure of the ceramics was identified by the Raman and X-ray diffraction techniques. Photoluminescence at room temperature was observed only in a disordered BST sample. Increasing the calcination time intensified the photoluminescence (PL), which reached its maximum value in the sample heat treated at 300 degrees C for 30 h. This emission may be correlated with the structural disorder. Periodic ab initio quantum-mechanical calculations using the CRYSTAL98 program can yield important information regarding the electronic and structural properties of crystalline and disordered solids. The experimental and theoretical results indicate the presence of intermediary energy levels in the band gap. This is ascribed to the break in symmetry, which is responsible for visible photoluminescence in the material's disordered state at room temperature. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Visible photoluminescence (PL) was observed for the first time at room temperature in structurally disordered calcium strontium tungstate powder, Ca0.60Sr0.40WO4 (CSW), obtained by the polymeric precursor method. The PL behavior of CSW powders has been analyzed as a function of the disorder rate, based on experimental and theoretical studies. Quantum mechanical theory based on density functional theory at the B3LYP level has been employed to study the electronic structure of two periodic models representing both crystalline and disordered powders. Their electronic structures have been analyzed in terms of density of states, band dispersion and charge densities. The calculations indicate a break in symmetry when passing from crystalline to disordered models, creating localized electronic levels above the valence band. Moreover, a negative charge transfer process takes place from the [WO3] cluster to the [WO4] cluster. The polarization induced by the break in symmetry and the existence of localized levels favors the creation of trapped holes and electrons, originating the PL phenomenon. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
We discuss the nature of visible photoluminescence at room temperature in amorphous lead titanate in the light of the results of recent experimental and theoretical calculations. Experimental results obtained by XANES and EXAFS revealed that amorphous lead titanate is composed of a Ti-O network having fivefold Ti coordination and NBO-type (non-bridging oxygen) defects. These defects can modify the electronic structure of amorphous compounds. Our calculation of the electronic structure involved the use of first-principle molecular calculations to simulate the variation of the electronic structure in the lead titanate crystalline phase, which is known to have a direct band gap, and we also made an in-depth examination of amorphous lead titanate. The results of our theoretical calculations of amorphous lead titanate indicate that the formation of fivefold coordination in the amorphous system may introduce delocalized electronic levels in the HOMO ( highest occupied molecular orbital) and the LUMO ( lowest unoccupied molecular orbital). A comparison of the experimental and theoretical results of amorphous compounds suggests the possibility of a radiative recombination (electron-hole pairs), which may be responsible for the emission of photoluminescence. (C) 2003 Kluwer Academic Publishers.
Resumo:
We discuss the nature of visible photoluminescence at room temperature in amorphous strontium titanate in the light of the results of a recent experimental and quantum mechanical theoretical study. Our calculation of the electronic structure involves the use of first-principles molecular calculations to simulate the variation of the electronic structure in the strontium titanate crystalline phase, which is known to have a direct band gap, and we also make an in-depth examination of amorphous strontium titanate. The results of our simulations of amorphous strontium titanate indicate that the formation of five-fold coordination in the amorphous system may introduce delocalized electronic levels in the highest occupied molecular orbital and the lowest unoccupied molecular orbital. These delocalized electronic levels are ascribed to the formation of a tail in the absorbance-spectrum curve. Optical absorption measurements experimentally showed the presence of a tail. The results are interpreted by the nature of these exponential optical edges and tails associated with defects promoted by the disordered structure of the amorphous material. We associate them with localized states in the band gap.
Resumo:
Sm-doped PbTiO3 powder was synthesized by the polymeric precursor method, and was heat treated at different temperatures. The x-ray diffraction, photoluminescence, and UV-visible were used as a probe for the structural order degree short-, intermediate-, and long-range orders. Sm-3+ ions were used as markers of these order-disorder transformations in the PbTiO3 system. From the Rietveld refinement of the Sm-doped PbTiO3 x-ray diffraction data, structural models were obtained and analyzed by periodic ab initio quantum mechanical calculations using the CRYSTAL 98 package within the framework of density functional theory at the B3LYP level. This program can yield important information regarding the structural and electronic properties of crystalline and disordered structures. The experimental and theoretical results indicate the presence of the localized states in the band gap, due to the symmetry break, which is responsible for visible photoluminescence at room temperature in the disordered structure. (c) 2006 American Institute of Physics.
Resumo:
A joint experimental and theoretical study has been carried out to rationalize the results of visible photoluminescence measurements at room temperature on Sr1-xTiO3-x (ST) perovskite thin films. From the experimental side, ST thin films, x = 0 to 0.9, have been synthesized following soft chemical processing, and the corresponding photoluminescence properties have been measured. First principles quantum mechanical techniques, based on density functional theory at the B3LYP level, have been employed to study the electronic structure of a crystalline, stoichiometric (x = 0) ST-s model and a nonstoichiometric (SrO-deficient, x not equal 0) and structurally disordered ST-d model. The relevance of the present theoretical and experimental results of the photoluminescence behavior of ST is discussed. The optical spectra and the calculations indicate that the symmetry-breaking process on going from ST-s to ST-d creates electronic levels in the valence band. Moreover, an analysis of the Mulliken charge distribution reveals a charge gradient in the structure. These combined effects seem to be responsible for the photoluminescence behavior of deficient Sr1-xTiO3-x.
Resumo:
We discuss the nature of visible photoluminescence (PL) at room temperature in amorphous calcium titanate in the light of the results of recent experimental and quantum mechanical theoretical studies. Our investigation of the electronic structure involved the use of first-principle molecular calculations to simulate the variation of the electronic structure in the calcium titanate crystalline phase, which is known to have a direct band gap, and we also made an in-depth examination of amorphous calcium titanate. The results of our theoretical calculations of amorphous calcium titanate indicate that the formation of fivefold coordination in the amorphous system may introduce delocalized electronic levels in the highest occupied and the lowest unoccupied molecular orbitals. These delocalized electronic levels are related to the formation of a tail in the absorbance spectrum curve. The results indicate that amorphous calcium titanate has the conduction band near the band gap dominated by Ca states contribution. Experimental optical absorption measurements showed the presence of a tail. These results are interpreted by the nature of these exponential optical edges and tails, associated with defects promoted by the disordered structure of the amorphous material. We associate them with delocalized states in the band gap. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
Disordered and crystalline Mn-doped BaTiO3 (BTO:Mn) powders were synthesized by the polymeric precursor method. After heat treatment, the nature of visible photoluminescence (PL) at room temperature in amorphous BTO:Mn was discussed, considering results of experimental and theoretical studies. X-ray diffraction (XRD), PL, and UV-vis were used to characterize this material. Rietveld refinement of the BTO:Mn from XRD data was used to built two models, which represent the crystalline BTO:Mn (BTO:Mn,) and disordered BTO:Mn (BTO:Mn-d) structures. Theses models were analyzed by the periodic ab initio quantum mechanical calculations using the CRYSTAL98 package within the framework of density functional theory at the B3LYP level. The experimental and theoretical results indicated that PL is related with the degree of disorder in the BTO:Mn powders and also suggests the presence of localized states in the disordered structure. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
An intense and broad visible photoluminescence (PL) band was observed at room temperature in structurally disordered PbWO4 thin films. The scheelite lead tungstate (PbWO4) films prepared by the polymeric precursor method and annealed at different temperatures were structurally characterized by means of x-ray diffraction and atomic force microscopy analysis. Quantum-mechanical calculations showed that the local disorder of the network modifier (Pb) has a very important role in the charge transfer involved in the green PL emission. The experimental and theoretical results are in good agreement, both indicating that the generation of the intense visible PL band is related to simultaneous structural order and disorder in the scheelite PbWO4 lattice.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Visible photoluminescence was generated in standard soda-lime-silica glass powder, mechanically milled in a high-energy attrition mill. The broad emission band maximum shows a linear dependence on the exciting wavelength, suggesting the possibility to tune the PL emission. The photoluminescence was attributed to defect generation related to unsatisfied chemical bonds due to the high surface area. Raman scattering and ultraviolet-visible optical reflectance measurements corroborate this assertion. Transmission electron microscopy measurements indicate that the powder is composed by nanocrystallites with about 10-20 nanometers immersed in an amorphous media.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)